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For my grandchildren – 
Sneha, Ruchika, Akash, Arya, Ayush and Shreya – 

Who inspire me to look ahead with joy and zest.
Ramjee Prasad

To the truly educated – reader, gracious, assertive, humanist, 
and proud citizen of the society.

Sandeep Srivastava



Dear Readers,

You must know that this book is in a genre of its own – an academically 
rigorous book for us all globally. For far too long, academic books 
have targeted only a fraction of the population; even scholastic 
achievement is taken to be the preserve of the gifted ones. 

The tone, organisation of content, conceptual intensity, and 
expanse of the book qualify it to be an academic work. However, 
the language is akin to literary writing, and the presentation is 
‘textbookish’ to facilitate an inalienable grip over the flow and 
substance.

Yet, in the jest to enliven academic concepts, their taut boundaries 
may have been infiltrated. 

Expectedly, the book would not be a familiar feel for all readers; it 
straddles across the unbridged academic and ‘trade’ (general public) 
genres.

We wish hope this inventive format of the book is appreciated.



– Ramjee Prasad
Unlock Your Personalization 

Aalborg University Press (March 1, 2012) 



This book is also one sequel to ‘Unlock Your Personalization.’ 
One end of this book is ‘Mathematising (our) thinking’ to root 
mathematics as a language of all social institutions and processes. 

‘Unlock Your Personalization’ promotes an innovative and novel 
approach to achieving a good quality of life.

Life is short, and its limits are apparent. Living should bring 
happiness and pleasure, but most people have to cope with enormous 
problems stemming from heavy workloads, stress, and anxiety. In 
our post-modern, techno-science world, every effort is being made 
to achieve a high standard of living. Still, few people find an effective 
solution for relieving stress and achieving their objectives in life. 

– Ramjee Prasad
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Preface
Thinking Humankind, All

Swami Vivekananda prophetically called upon us to ‘make men 
first’. He reminded us of the on-the-ground truth that even if 
governments give us all we must have, ‘where are the men who are 
able to keep up the things demanded.’ Unsurprisingly, the italicised 
phrase encapsulates the most crippling crisis before humankind 
a century after its articulation by him. The phrase quite sits at the 
heart of what the book is set to catalyse – (human) development 
revolution – by galvanising us all to be spirited humans in the ever-
intensifying Sci-Tech (Science and Technology) and AI (Artificial 
Intelligence) era.    

More simply stated, this book is about you, your family, and 
the community you are nested in. It is most peerlessly so along 
multiple dimensions. The book is about contemporising you – your 
knowledge and skills – to the technology of the times – Artificial 
Intelligence (AI). The book will seed in you the exemplary life 
to thrive in the fast-realising world of inorganic intelligence, an 
unprecedentedly malleable future.  The book will lay bare the 
designs and destinations on the Fourth Industrial Revolution (4IR), 
or Industry 4.0 highway.  

The book also decodes why 4IR is struggling to hold its ground, 
let alone accomplish its promise, and how the context of your 
family and community cannot be future-proofed if 4IR fails in 
revolutionising social infrastructure – education and health for all 
8 billion of us, and the (economic) dignity of all adults. 
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The only business of societies and humankind is same-outcome 
education of all children@18. Health is on the cusp of education 
and economics. 4IR is our last opportunity to trigger and sustain an 
unexceptionally global socio-economic renaissance.    

Educated blindness – A world hiding in plain sight
Inattentional blindness is a biological limitation, our ‘brain’s fault’; 
we cannot really blame ourselves. It is personal in nature, and 
there is not even a remote chance that two random people could 
have overlapping inattention to similar things over different times 
and spaces. On the whole, it all does even out, and no loss or hurt 
visits anyone; for example, things that get the attention of the sexes 
are complementary to some extent, and together, a couple covers 
up for one another (one may miss blue tea roses, the other violet 
tea roses in a walk through a garden). The worst manifestation of 
inattention is mostly embarrassment.

There is a social correspond of inattentional blindness, a 
creation of our socio-cultural conditioning, our ‘education’s fault’. 
Unsurprisingly, it is best addressed as ‘educated blindness’, most 
acutely and almost universally noticeable among those formally 
educated, and the longer the formal education, the more likely is 
the ‘affliction’ with educated blindness. The only apparent similarity 
'educated blindness' bears with its biological twin is that we cannot 
really blame the educated individuals; the cultural as well as the 
formal education system is riddled with holes. 

Educated blindness is visible and veritable conditioning of 
thinking, learning, observation, acting to preserve (more significant, 
long term) self-interests and assertion of moral being. Its worst 
manifestation is thin-cultured adults, globally with an iron-
curtained worldview, a rather narrow worldview, and increasingly 
transmitted and transplanted worldwide with the help of the 
most uniform social institution across the world, the K-12 formal 
education system. 
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More specifically, educated blindness is reflected in the substantive 
majority and the ‘toppers’ of the formal education system falling into 
a new ‘average’ – individuals out to pursue similar kinds of careers, 
having the same meaning of success in career (and not seeking 
professional stature), same meaning of being rich, the same way of 
becoming rich, marginalised larger socio-cultural identity, a culture 
unto themselves and so on. It is the reason behind indifference to 
unconscionable inequity in wealth and income, fractured society, 
treating climate mitigation as a new gold rush rather than a social 
and humanitarian challenge, ‘professionalisation’ of the social sector – 
education, health and civil society, and many things else.

Educated citizenship – The vital soft-infrastructure 
History is sharp about each new economic revolution stepping 
up the demands on humans. The era of the driverless cars on 
the street and the generative AI of the next decade would still 
need (appropriately) educated humanity. For instance, people 
‘educated to be doing something joyous’ while being driven 
around, people educated to reinvent their businesses around 
driverless vehicles, people educated to feel productive and 
wanted in new ways, people educated to add value to the outputs 
of generative AI, and more would be in demand. We have to 
recontextualise what it means to be educated. 

However, it seems making humans (raising adults out of infants) is 
now a long-lost art for humanity. The more ‘developed and advanced’ 
the nation, the more vigorous and devoted the institutionalisation of 
this ‘phase of raising, educating’ children. Education is the name of 
all that happens to make a ‘dignified, cultured adult’ out of infants. 
Human infants do not grow into humans on biological DNA (all 
other animal infants do); it takes (more than) a village to raise 
every child over two decades. Education is 100% social – among 
role-model adults, peers (ideally not same-age), and the ‘real world’ 
(nature and community). 
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The first, primary goal of nurturing educated adults is 
to ensure their economic dignity, without exception. The 
secondary, but not lesser, goal is thickly/deeply cultured adults 
who live and enrich their chosen socio-cultural contexts, such 
as active civic constitutionalism.

4IR – The omnipotent hard-infrastructure
To avoid getting the wrong end of the stick, let us begin by 
emphasising that 4IR represents an entire array of digitised  
technologies, irrespective of how it is formally defined across 
institutions and experts. The digital foundation of 4IR (including 
Big Data), together with AI, is materialising a sea of appropriate 
technologies to best empower our individual choices. Many of these 
technological imperatives would require the frontier of science to 
be expanded like never before and also multiply the intensity of the 
mathematisation of science (and social sciences, and everything else 
too).  Fortunately, research and innovation processes and resources 
are transforming to seed unprecedented development of science 
and technology. 4IR is a dream infrastructure for a socio-economic 
revolution for all, a first for humankind. 

Society 5.0 – Social outcome of 4IR
Society 5.0 is defined as a human-centred society that balances 
economic advancement with the resolution of social problems by 
a system that seamlessly integrates cyberspace and physical space. 
The term “Society 5.0” was introduced by the Japanese government 
as part of their “Fifth Science and Technology Basic Plan” in 2016 to 
refer to society that evolves with 4IR. The plan presents the hunting 
society (Society 1.0), agricultural society (Society 2.0), industrial 
society (Society 3.0), and information age society, 4IR (Society 4.0). 
Much like the way 4IR represented the entire technoscape of the 
times ahead, the gamut of the socio-cultural world associated with 
4IR is represented by Society 5.0.
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A bit of economic history should help us understand the genesis 
of Society 5.0 and how a more organic collocation of social and 
economic development is non-negotiable. The Iron Age triggered 
a sense of private ownership of anything (land, forests in those 
times); iron swords, for example, could cut trees to create fields, and 
animal-drawn carts with iron-rimmed wheels could go way beyond 
the communal land to claim private ownership. Later, iron weapons 
made larger-scale war and killing possible, and the sense of private 
property extended to taking away what belonged to others. Unlike 
the weapons in the Iron Age, Bronze Age weapons were heavier and 
did not have strength or sharpness or iron weapons. As pertinently, 
the driver of ‘privatising properties’ was the appropriation of 
extra (societal) resources and later deployment of the differential 
resources for gaining property.  

The race to private property has not abetted even after 3000 years. 
Worst, the ownership of immeasurable tracts of land (and building 
as a proxy for space similar to land) is the hallmark of being rich. 

Almost as a default implication of private property, economic 
development, and the good of the entire society have never 
reconciled to date. 

Economic development has come to mean a varying degree, 
exploitation of communal/societal resources and trust for 
‘privatising the same’, to benefit a few at the cost of the entire society 
(to which the few may belong). Resource differential still rules the 
roost, and for all the time in history, it has almost always been the 
monetary capital. Interestingly, around the cusp of 3IR and 4IR, 
broadly between the mid-1990s and early 2010s, knowledge was 
expected to be an equal resource differential, but it is almost back to 
the historical reality of monetary capital again.

Another (very) long story short, it is rightful to hope that in the 
4IR Age, the critical resource differential shall be individuals – their 
ingenuity, industry, and integrity. In other words, the education 
system is in its broadest (true) sense. The entire socio-cultural 
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and economic ecosystem is now almost equally accessible to all 
through the Personal Multimedia Communication revolution. In 
effect, let us hope and work towards the differential being what 
individuals can imagine of 4IR and value creation through it for 
self, family, community, as well as humanity (remember, it is a 
global village now.)

Interestingly, the website of the Office of the Cabinet, 
Government of Japan, mentions that Japan aims to be the first state 
to achieve a human-centred national society, named Society 5.0 
(following a particular hierarchy of the evolution of humankind). 
Such a society could be visualised as one that will create and 
nurture a socio-economic environment that best facilitates one 
and all to enjoy a high quality of life, exemplified by proactive and 
productive citizens, every one of them. It elaborates that innovative 
culture, diverse technologies, and the social integration of the two 
into the fabric of the nation are how Society 5.0 will crystallise.   

Indeed, over to 4IR and popular imagination.    
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‘Unite to Regulate (Generative) AI’ is the new battle hymn of the 
global political rhetoric, unseating climate change in just a matter 
of months. 4IR is defying its DNA even after a decade in action – it 
is turning (net) producers to (net) consumers, crushing economic 
dignity to dust for an ever-increasing fraction of humankind. 

AI and 4IR are inherently about comprehensively personalising 
the world for every one of us, to empower every one of us to be best 
educated, healthy, and live with dignity in a truly democratic society 
(and nation). The two embody the grandest designs for an assuredly 
happy earth.

Instead, we are staring at an unimaginable and exceptionally 
collective future – adults, families, communities, and societies 
disabled from powering their survival and growth. The most 
gratifying thread throughout history is that families and communities 
made ends meet, war or peace. All (able) adults were net producers 
and paid some form of taxes to the state. It is unnatural to humanity 
to even think of something like universal basic income to a fast-
growing fraction of net consumer adults.

Of course, the book is all about negating this possibility. 
Mathematised thinking is humanity’s gravest miss. We present a 
peerless action plan to mathematise our thinking. To enable every 
one of us to plug into the truly global and omnipotent AI soft 
infrastructure and the next-generation 4IR infrastructure. Satya 
Nadella emphasises the need for a billion developers, considering it 

Section I

AI and 4IR – An inexplicable crossroads for 
humankind
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a democratising tool to facilitate easier access to new technology and 
knowledge, simplifying the learning curve. Lest ‘a billion developers’ 
is misread to mean ‘a billion software/AI professionals,’ we wish to 
assert that it is best read as ‘a billion thinking professionals.’

A peerless human revolution is ahead of us!
Fortuitously, the mathematical rooting of this revolution 

guarantees its infallibility. Mathematics may just be the most explicit 
self-organising consciousness in us. It is anchored in the ways and 
working of the world around us as it gathers mass and momentum 
almost autonomously, on its own devices. The mathematisation of 
humankind is unstoppable in its reach and catalytic drivers.
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A distinguishing feature of disruptive technologies is that they are 
global; those charging  the Fourth  Industrial Revolution, 4IR, are no 
exception. All disruptive technologies are born in the imaginations 
of a few people; they are hardly evolutionary or get thrown up 
from the ground realities. It takes someone to transcend the extant 
technologies, limitations, (insatiable) wants, and economics. 
Interestingly, the relationship of technologies with imagination is  
‘symbiotic’;  all technologies – local, regional, national, or global – 
are born in someone’s head. Disruptive technologies stand out for 
the meticulousness and grandness of their imagined avatar, and 
they are truly elaborate thought experiments. They are explicitly and 
entirely mathematical in their expression for wider dissemination 
and operationalisation. It is not wrong to infer herefrom that 
all technologies are someone’s imagination and mathematically 
expressible (as continuous or discreet mathematical relationship). 

Every technology is (somebody’s) a figment of imagination
Every ‘working technology’ is a mathematical success, and failed 
technologies are, above all, a mathematical lapse. Every technology, 
good and bad, is first a ‘mathematised imagination’, starting with a 
substantial period of subconscious, piecemeal, and gross frames of states 
and relationships. The self-driving cars, generative artificial intelligence 
(AI) products like ChatGPT, the Titanic submersible, TikTok interface 
and algorithms, no-touch water taps, memory pillows, and all else 
originated as an idea in the minds of some people.

4IR Must Ride on Popular Imagination  
Thought experiments by a few billion us  
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It is no overstatement that the recognition of a technology, the 
moment the technology comes alive in our consciousness, is filled 
with mathematical details – polygons, circles, cones, cylinders, sizes, 
strength, composition of material, price, angles, length, breath, rate 
of change, etc. Engineering drawings encode the visual reality of 
the creativity of one or more heads. The prototypes that follow are 
the beginning of the reality check, yet they have to conform to the 
evolving images in some heads. For example, every home is first 
housed in the owner’s imagination for an extended period before 
it is shared with the architects with details of cost, space, rooms, 
floors, roofs, etc. There is nothing to get started with unless and 
until there is imagination.

It should not surprise that similar mathematical imaginations 
operate among scientists and dictate the articulation of the 
hypotheses to be tested and experimental set-up for the same. But 
there is a catch here – some scientific ‘imaginations’ cannot be 
actualised into an experimental setup. For, science studies nature to 
draw insights about the ‘universal truths’ (valid all around, and on 
earth, at the least proven to be valid beyond earth) behind the order 
and patterns in nature (for instance, rain precipitates under very 
specific multi-dimensional conditions).

Scientific experiments have to duplicate conditions in nature 
precisely; at the same time, many natural conditions cannot be 
created in all their glory and gusto in laboratories. And then some 
extraordinary minds push the boundary of imagination to host 
dynamic experiments in their mind. They live the desired experiment 
in their mind, thoughts, and pronounce their discoveries that may 
attract some belief from fellow researchers. Thereon, it becomes a 
waiting game – fine-tuning experimental paraphernalia that embeds 
the necessary conditions to endorse or deny the pronouncements 
credibly. To know that a few thought experiments did come to be 
true after decades is the most glowing ode to human capabilities 
every one of us possesses.  
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A brief introduction to the most audacious thought experiments 
is worth its weight in gold. 

The unparalleled thought experiment 
The presence of the gravitational waves was one outcome of the 
thought experiments of Albert Einstein more than a century ago, 
in 1916. In his general theory of relativity, he had predicted the 
presence of these waves criss-crossing the universe as ripples in 
space-time at the speed of light.

After years of internationally coordinated research and data 
sharing, especially since 2015, when the evidence of low-frequency 
gravitational waves was registered, towards the end of June 2023, 
a consortium of hundreds of astronomers and scientists in North 
America, Europe, China, India and Australia heard the sound of 
gravitational waves, much like a continuous hum of a noisy restaurant. 

The sound of gravitational waves is being hailed as the most 
confirmatory evidence of the existence of such waves through 
the limitless universe. The search for the physical evidence of 
these ‘ripples in a taut fabric of space-time’ waves has been active 
for the past few decades. Michael Keith of the European Pulsar 
Timing Array stated, “We now know that the universe is awash with 
gravitational waves.” 

The gravitational waves were stated to be low-frequency waves that 
travel  through the universe and interact very weakly with matter; 
thus, they are mostly unnoticed. The low frequency of the gravitational 
waves also meant that their detection was beyond the antennas that 
we could ever build; low frequency implies large wavelength – the 
wavelength of the gravitational waves varies from a few kilometres to 
the size of the universe (there is an inverse quantitative relationship 
between frequency and wavelength of electromagnetic, or ‘similar’ 
gravitational waves). To detect and measure gravitational waves, 
scientists require extremely sensitive instruments that can detect the 
minute displacements caused by the waves.
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To detect these waves, we had to find a way of discovering a proxy 
wave that is measurable by the largest possible antenna scientists 
use (diameter of about 500 m). To understand the scale of things, 
electromagnetic waves of 3 Hz frequency (3 cycles of ‘up and down’ 
of wave in one second) would have a wavelength (the length of one 
cycle) of 1,00,000 km. For capturing the presence of such extra-large 
wavelengths, we would imagine antennas of the size of the earth 
would be needed. 

To circumvent this problem, an indirect way of detecting 
gravitational waves was devised by the scientist. The proxy they 
used was studying disturbances and small changes in the waves 
emitted by pulsars (a kind of star that is a source of pulsating 
electromagnetic waves). 

Why do the scientists use the waves emitted by pulsars to detect 
gravitational waves? Pulsars emit very high frequency waves (in fact, 
they also include gamma rays, waves with the highest frequency) 
and thus require a very small diameter antenna to be recognised 
(given their very small wavelengths), which can be deployed 
on the earth. When the pulsar waves cross paths with passing 
gravitational wave, their stable and predictable path and wavelength 
is altered. Therefore, to detect gravitational waves, scientists track 
and minutely observe pulsar waves for any change in them due to 
passing gravitational waves.

In 2015, scientists in the US and Italian observatories announced 
the direct detection of gravitational waves, which were created as 
a result of the impact of the collision of two black holes some 1.8 
billion light-years away (the event took place so far away from the 
earth that it took 1.8 billion years for the waves to reach earth, 
given that it travelled at the speed of 3,00,000 km per second, 9.5 
trillion km per year; a distance of 1.7 × 1022). The collision between 
the two black holes was so ‘energy-intensive, violent’ that it sent 
shock waves throughout space-time (in space, it did not dissipate  
but stayed alive over time). 
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Interestingly, the previous three observations of gravitational 
waves could not confidently fit the rigour of standards to confirm 
the existence of gravitational waves. It was the fourth such detection 
of gravitational waves that met the rigorous standards required to 
verify the existence of gravitational. 

It is impossible to detect very low frequency waves by ground-
based interferometers or even space-based interferometers. There is 
no credible source for detecting very high frequency as well. Very 
low frequency waves can be detected when superimposed on high 
frequency waves.

This exciting finding proves that Einstein was correct in thinking that 
the force of gravity is due to the curvature of space and time. It also opens 
up possibilities of an unprecedented new window onto the cosmos, 
into the furthest reaches of our universe.

Gravitational waves carry information about their dramatic 
origins and about the nature of gravity that cannot otherwise be 
obtained. This collision of two black holes had been predicted but 
never observed.

Rainer Weiss, professor of physics, emeritus, at MIT, wishfully 
spoke about how ‘it would have been wonderful to watch Einstein’s face 
had we been able to tell him’ about the details of these observations. 
He eloquently observes that Einstein’s theory of general relativity 
had beautifully described the universal presence of gravitational 
forces and their impacts some 100 years ago.

Detecting gravitational waves is counted as among the more 
spectacular achievements in physics so far in this century. 

Recall that Newton had universalised the reality of the falling 
apple in the name of  gravity; he had connected the most mundane 
of natural order (all things always fall back to the ground) to how 
things happen across the universe. It is not hard to empathise with 
Newton that he had famously refused to explain the reason for the 
force of gravity; it was a singular achievement and the first scientific 
law pronounced to be applicable across the universe. 
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More than two centuries later, Einstein actually put forward 
the operational details of gravity. In his vision, gravity caused the 
universe to go around, be continuously on the move, and along 
well-defined paths. Gravity also explains why things fall on a body 
with the same acceleration (the same gravitational force ‘area’), their 
mass irrespective. His explanation of the workings of gravity also 
accounts for its functioning in a vacuum. 

Of course, his work did throw light on why we are stuck to the 
earth and why things fall to the ‘ground’. 

Einstein’s theory of gravity, his general theory of relativity, has 
been read to imply that the curved nature of space-time acts as a 
kind of a (non-material) field of force that acts as a pull towards the 
heavier object, and in that sense ‘things fall towards the ground’. 
John A. Wheeler, a renowned physicist, famously articulated that 
the interaction between space-time (points in space at different 
times) and matter can be described as 'mass gripping space-time, 
telling it how to curve' and 'space-time gripping mass, telling it how 
to move.' This means matter and space-time are intertwined and 
affect each other's behavior.  Mass affects how a part of space looks 
(and behaves); in turn, the affected space navigates any mass around 
it. It must just help to know that electromagnetic waves, such as 
light, are examples of non-material ‘force’, unlike sound waves that 
are carried by matter.

One of Einstein’s most supra-human qualities was his 
remarkable ability to imagine complex scientific situations as real-
life scenarios. He called these scenarios  Gedankenexperiments, 
which is German for thought experiments. He deployed these 
virtual experiments as his reality check, and it took diverse ways. 
For example, he visualised what the world would look like if one 
travelled tagged along a ray of light.

To be honest, what he did was mathematics, as ‘armchair’ physicist 
he derived mathematical expressions that represented his imagined 
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reality, and mathematics held for him the immensely powerful logic 
and reason. 

There is a popular and powerful quote attributed to Albert Einstein, 
commonly known as ‘the happiest thought of my life.’  While working 
as a patent clerk, he suddenly imagined a person freely falling to 
the ground. His thoughts were arrested around the magnitude of 
the person’s weight, and he could ‘see’ that such a person would 
not feel his weight. This realisation profoundly impacted him and 
inspired him to develop his theory of gravitation. Einstein was so 
taken aback by this thought that he said, “I was startled.”

Thought experiments have a long history
Interestingly, the German literary icon and polymath Johann 
Wolfgang von Goethe’s words on ‘thought experiments’ resonate 
with the aforementioned ‘happiest thoughts’ of Einstein. He 
discounted ‘thoughts’, and placed a premium on the ‘experiments’ 
with the thoughts. He believed many people have enlightening 
and innovative ideas, but only those that can withstand scrutiny 
and become rooted in personal experiences are truly unique and 
valuable.  History is replete with examples of physical and thought 
experiments that underlie our progressive evolution.

In the seventeenth century, Galileo used thought experiments to 
affirm his theories. One famous example is that of two balls (one 
heavy, one light) being dropped from the Leaning Tower of Pisa. 
And he postulated the behaviour of the falling balls quite opposite 
to the prevailing expectation that the heavier ball would hit the 
ground sooner than the lighter one.  

In the 1930s, there was the famous Schrödinger’s cat thought 
experiment. In simple terms, he visualised a cat and something that 
could kill the cat (a radioactive atom) in a sealed box. One would 
not know if the cat was dead or alive until the box is opened, and 
for that  duration, the cat can only be assumed to be both ‘dead 
and alive’ (uncertainty of death or life.) Pertinently, this state of 



16     4IR must ride on popular imagination 

uncertainty would end as soon as the box is opened; the cat would 
be dead or alive, not both. The health of the cat could also be seen as 
‘somewhere between alive and kicking to nearly dead, if not dead’.  

Erwin Schrödinger’s equation presented a ‘similar’ (mathematical) 
description of all possible outcomes,  locations and characteristics 
of quantum systems as they change over time (quantum may be 
read as ‘the smallest quantity’, such as an electron or a photon, or 
even something bigger.)  Schrödinger’s equation does not specify 
the exact location of a particle but gives a (definite) probability 
distribution of the locations of the particle. 

Yes, you are correct in thinking that thought experiments must  be 
natural and, in fact, the first step, in setting up physical experiments. 
The first written record of thought experiments goes back 2500 
years to the Achilles paradox.  The paradox was the thought proof 
of the impossibility of infinite distinct actions/steps in finite time. 
Zeno, a Greek philosopher, visualised infinity as the never-closing 
gap between a tortoise with a head start with respect to Achilles 
in a run to a destination, though the gap would narrow with time 
(depending upon the difference in their steady speeds). 

As he saw it, by the time Achilles covers the initial gap with the 
tortoise, the latter would have moved some distance further ahead, 
howsoever small, causing a new gap. As Achilles runs to catch up 
with the new gap, the tortoise establishes another new gap, smaller 
than the previous gap but a definite/finite one. In  the final analysis, 
there would be a reducing gap between the two but always a (finite) 
gap, well into infinite, never-ending iterations of the run for the gap. 
To be true, such a context could only be envisioned.
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Visually,

Achilles paradox

The limitlessness of thought experiments 
It must be acknowledged that the choice of gravity to illustrate the 
inalienable role of thought experiments is not just to go behind 
Einstein’s genius. There is more in the public domain on thought 
experiments on gravity, expectedly, involving another genius. 

Richard Feynman and Einstein have a very organic intellectual 
connection on gravity through a seamless thought experiment 
on the same (expectedly, both were theoretical or mathematical 
physicists). This is particularly interesting because Einstein wavered 
on the existence of gravitational waves; in the 1930s, he wrote a 
paper denying their existence and later asserted them again in the 
1950s. But soon after Einstein died in 1955, Feynman showcased, 
in 1957, an ingenious thought experiment that sealed the reality of 
gravitational waves, and all that was left was its experimental proof, 
which happened in 2015.    
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The very role of Feynman is humbling and heady. He was known 
for going back to the first principles to uncover all challenging 
questions. He was known to be his own person; concepts must 
concepts must make sense to him personally. And he was a great 
teacher – his narratives were famously incisive and the simplest. This 
is primarily why he was invited to the first American conference 
on general relativity in 1957, despite being at the ‘opposite’ end of 
interest in physics – quantum systems. He is highly regarded for 
‘connecting feeling to doing’ and insisting on the high probability 
of physicalising gut thoughts; in  his words, ‘my instincts are that if 
you can feel it, you can make it.’

Feynman’s ‘first principle approach’ brought him to serve the 
wake-up call to all – if gravitational waves exist, they must be 
energy carriers. This concretised the research goal for the waves 
till their discovery in 2015. His intuitive visualisation of energy 
has come to be known as the ‘sticky bead argument.’ The details of 
this thought experiment are not relevant to our conversations here. 
Broadly, his visual imagery harnessed the common knowledge of 
how a pair of anchored (electric) charges  oscillated when exposed 
to electromagnetic waves. 

The difficulty in detecting gravitational waves arises because 
gravity is much weaker electromagnetism; gravitational waves are 
far less ‘forceful’ when compared to electromagnetic force. This 
‘physical insignificance’ of the gravitational waves is the major 
obstacle in their recognition and technological experimentation. 

Relevantly, this thought experiment laid the foundation of the 
effective experimental set-up (detector) for detecting the waves. 
His ‘thought wave detector’ helped better mathematisation of the 
gravitational waves, for instance, to measure the amount of energy 
gravitational waves may carry. His detector was a simple set up – 
if multiple detectors are appropriately placed behind one another 
on the path of the waves, each successive detector would have a 
decreasing amount of energy registered/absorbed. If this was not 
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the case, then unlimited energy would have been withdrawn from 
the waves, and that is not a valid situation. Thus, a proof of the waves 
was in the weakening of the waves when put through detectors. 

Six decades later, the waves were scientifically verified.
Thought experiments are better sharable than duplicating 

experimental setups, making the former a very powerful engine of 
discovery and inventions.

Mathematics and thought experiments  
Gravitational waves as a proof of how Einstein conceptualised 
gravity came alive as part of the implications of Einstein’s equations 
on general relativity in 1916. However, over the following years, he  
distanced himself from the existence of the waves, and in a 1936 
research paper titled ‘Do Gravitational waves exist?’ he formally 
denied it Einstein developed a feeling that the waves were more 
artifacts of his mathematical presentation of the  waves; they did 
not physically exist. Perhaps, he felt that he exceeded the turf of 
the geometrical formulation of his space-time conception and its 
implications. He had based his theory on geometries that were way 
beyond the established geometry of plane surfaces. He relied on 
the emerging geometrical formulations of curves and non-planar 
shapes, specifically Riemannian geometry, which was introduced 
just a few decades before his  theories in 1854. He had drawn so 
completely from Riemann’s work that it would not be wrong to see 
the mathematical conception of Einstein as applying Riemann in 
the context of explaining gravity. 

A simple fact is that the four-dimensional space-time originated in 
mathematics, and it was easier for theoretical physicists to visualise, 
as compared to the larger scientific community. Unsurprisingly, 
while Einstein revolutionised the understanding of two least 
understood universal physical realities – energy and gravity, his 
theories were not instant hits; his language was mathematics, and 
the mathematics he employed was not so familiar to many physicists 
of the time.
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In hindsight, Einstein’s self-doubt is better appreciable, and the 
words of Steven Weinberg, a leading theoretical physicist and Nobel 
laureate, put it all in perspective. 

According to him, by the 1910s, the decade that saw the articulation 
of the theory of general relativity, Riemannian geometry was 
gaining wide acceptance in explaining the behaviour of smoother 
curves (best suited for modelling the way the gravitational field is 
visualised as taut fabric). Recall that the more the curvature at a 
point, the greater the gravitational force experienced at that point; 
understanding the nature of the curvature is all important. But 
it must also be noted here that he does accord all admiration to 
Einstein for visualising gravity to be not a force, per se, but the effect 
of ‘the peculiar empirical properties of gravitation (of curvature, and 
shapes that curvatures make).’

Einstein’s extensive thought experiments materialised on 
the back of rigorous mathematical reasoning, high integrity in 
the application of established mathematical formulations, and 
meticulous computational details. 

Indeed, mathematics gives thought experiments the much to be 
‘seen’, repeatable, communicated, debated, and experimentally verified. 

The essence of thought experiments 
Let there be no misconception of thought experiments being 
critical to sciences and interdisciplinary domains such as urban 
planning also deploy (mathematical) visualisations. For example, 
no on-the-ground study can be initiated to green up cities through 
non-fossil energy as the current and the eventual urban spaces look 
vastly different. The design and development of densely populated 
cities follow their energy source – high energy-density fossil fuels. 
Cities would need to be ‘refounded’ for the much dispersed green 
energy; solar energy, as per the current solar cells, takes a few 
hundred times more space to produce energy than fossil sources. 
This transformation of cities has to be a thought experiment, an 
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imagined new model of cities to start with; the scope and size of 
such a change are too massive to be concretised by any formal 
knowledge and tools.

Thought experiments are also used in social sciences and even 
philosophy.  A common trigger for thought experiments in these 
domains is the exploration of social conditions that involve ethical, 
moral, and increasingly religious and political dimensions, which 
are also best thought experimented on. Top of the recall examples 
of such ethical issues would include those related to mercy killing, 
abortion, affirmative actions, gender identities, and even children's 
rights, which are hotly debated.

In broadest terms, we may dilute the reference to mathematics 
as a foundational vehicle for thought experiments, but they remain 
fairly well-defined and well-articulated. Richard Feynman calls 
thought experiments to be scientific – ‘a process of thought based 
on integrating previous knowledge, observing, measuring, and logical 
reasoning.’ Yet, it is much about the person who lends the head for it.  

It is no exaggeration that thought experiments empower us to 
investigate situations that are impossible to test and to predict their 
behaviour confidently. Mastering thought experiments may be the 
only way to confront the most challenging and intriguing situations 
and anticipate (and prevent) potential crises.

Thought experimenting 4IR to infinitise 4IR 

Why thought experiment 4IR? Whatever 4IR stands for in popular 
imagination and the scientific community, business organisations, 
and governments, it has failed and means little to the vast majority 
of humankind. We have to reimagine 4IR. 

Also, let the association with 4IR not imply any limitation to 
the technological juggernaut of these times and its acceleration 
in the decades ahead. 4IR is just the most popular symbol of 
unprecedented possibilities. 
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We have already alluded to 4IR being a momentous opportunity. 
time, the ‘world of one’ is here and now; the world is the stage for all,  
everything is accessible to all for just deserving them. Personalisation of 
education, resources, and opportunities is increasingly without bounds. 

Mass personalisation is passé, for all the  good, it still leaves 
much to be desired. The intensive digitalisation of the most 
micro of processes and resources in value chains of service and 
production implies dream combinations of pathways to create 
personalised, best-value experiences and products. This is almost 
like creating value out of thin air, maximising value added at 
every discrete step, addressing every bit of unfulfilled want/
demand while completely erasing ‘consumer waste’ (kind of extra, 
unsought, less-than-useful features). 

Next-generation personalisation may best be named ‘Living 
Personalisation’ (LP) – creating products and services that 
dynamically and continuously improve towards zero ‘consumer 
waste’, and no unfulfilled demand. It rides on Big Data on individuals, 
their dynamic choices, and longitudinal generative AI. Personal 
Multimedia Communication (PMC) is just the infrastructure to 
make LP live and kicking. 4IR is just the comprehensive ecosystem 
around that infrastructure, encompassing social, cultural, personal, 
economic, political, technological, and ecological dimensions.

People must be able to generate new and more cost-effective socio-
economic values out of the infrastructure. However, benefitting 
from ‘personal infrastructure’ is a different ball game, a unique and 
evolving opportunity, compared to making the most of mass/public 
infrastructure. Additionally, personal infrastructure is an equalizer 
like nothing else before; it evaporates the access barriers, and in that 
process, it also dramatically intensifies the competitive landscape  
despite accentuating more personal/private competitive advantages. 

PMC’s promises are only realisable when the users grow to 
be naturally technology savvy, have a fairly  practised scientific 
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temper, have a mathematical sense to express relationships among 
quantities and have critical and creative thinking, as well as 
specific mathematical competencies that help in Big Data analysis 
(patterns in real Big Data are emerging as a new source of research 
and innovation). 

Clearly, 4IR needs to be (continuously) revisited and experimented 
with again (and again) to realise its potential promises.

What may be thought experimenting 4IR? To the extent that 
4IR is an ecosystem, it is not ‘one thing, or one situation’, not even 
many things or many situations. How does one conceptualise such 
a boundaryless ‘entity’? We cannot.  Fortunately, two dimensions 
are foundational to 4IR –  technologies and people (how we interact 
and react to the unforeseeable deluge of new sci-tech and how we 
collect together to live the most sci-tech of times). 

To the point, substantively, thought experimenting 4IR would be 
about re-imagining the course of science and technology that would 
maximise the well-being of all of us (not the maximum possible 
number of us). Studying technologies and ‘who we are, what makes 
us so’ may be the primary focus. Mathematics would be a big part of 
the technology rethink.

As a process, it should integrate all the extant knowledge, newer 
observations and experiences, logical reasoning around technology,  
human thinking, values, and behaviour. 

‘Infinitising 4IR’ is the personalisation of the world  
At the ground level, ‘infinitising 4IR’ means leaving people to 
make sense of the 4IR ecosystem in their distinctive, differentiated, 
and dynamic ways and respecting individuals to maximise their 
existential and meta-physical identities and joys. The cusp of 
emergent personalisation-enhancing technologies and every 8 
billion of us is limitlessly diverse and deep.
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At the level, ‘infinitising 4IR’ means ensuring and sustaining 
organically assertive societal oversight over the choices open 
to communities, businesses, and governments, in all matters 
impinging upon civil liberties of people. Effectively, this is about 
assuredly protecting the aforementioned ground level meaning of 
4IR. One critical dimension of 4IR is enabling ever-refined, truly 
democratic social consensus processes. We cannot even well-
describe the imperatives, possibilities, and gains of a 100% inclusive 
and transparently negotiated social decision-making process. To be 
true, the revolutionary impact of 4IR as a context for revitalising 
societies cannot be finitised.  

Very interestingly, the catalytic possibilities of 4IR at personal and 
societal levels also pulls it in fuelling an educational  renaissance  in 
nurturing infants into adults who shall play their part in infinitising 
4IR, as above. A same-outcome formal education system (K-12 at 
the least) is needed to ensure adults are ready to make considered 
choices in the 4IR ecosystem.

Popular imagination will infinitise 4IR
Everything is getting digitally denominated. Digitalisation has grown 
exponentially, both laterally and vertically, and the two expansions 
act to be mutually additive. It is democratising innovation, 
application as well as scientific (real-time, Big Data is powering 
bottom-up innovation). On the whole, the ecological footprint of 
digital technologies is also favourable. It catalyses AI, but the idea 
of AI is not new. It also alters the human-human interface in other 
ways – virtual and augmented reality. Above all, its disruptive force 
is fast, furious, and sweeping. 

Most importantly, digital technologies continue rapid mutation 
apace – getting ‘softer’ by the day as the hardware is getting literally 
and figuratively miniaturised. In turn, the softwarisation of digital 
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technology is limited only by our ability to logicalise situations and 
logicalisation is actually mathematisation, our ability to express 
given situations through mathematical expressions. 

By definition, new applications of digital technologies often 
follow mathematical discoveries. Infinitisation of 4IR is limited only 
by the mathematisation of (our) thinking – for both the halves of 
4IR – technological innovations, as well as people capacity building. 
Mathematisation of thinking is just the imperative.

One thing is absolutely certain – 4IR will keep expanding in scope 
and scale, and mathematics will be marching in step, actually ahead.   

Humankind is mathematising!
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Humankind is Mathematising
Soaring discovery, invention of Order 

The place of mathematics in society has never been in question. 
The pedestal accorded to mathematicians across societies volumes 
about it. Mathematical knowledge and skill are considered such 
a suprahuman occurrence that even a poor academic record in 
mathematics is some kind of a badge of quality of being ‘normal’, 
being creative in some ways. People feel cringed at not being good 
at drawing, singing, or dancing, but being poor at mathematics 
is a matter to bond over. Apparently, mathematical handicaps 
seem to bear little correlation with professional success. To top it 
all, mathematics skills need not be personally mastered because 
mathematical computations enjoy the benefit of high integrity. 
Misdemeanours and even frauds never go undetected for long, 
especially after due forensic examination. 

However, all this leniency with lack of success in mathematics 
education started to pinch as the Third Industrial Revolution, 
3IR, peaked towards the last decade of the twentieth century. 
Chorus for improving math education globally has been getting 
shriller ever since. 3IR matured with analogue electronics turning 
to digital electronics; semiconductors, personal computers, 
internet, mobile phones, robotics, 3D printing, and the like 
were the typical innovations of this era. 3IR brought down 
barriers to opportunities and resources to ignite knowledge-led, 
small-business entrepreneurial ventures to compete with and 
complement corporates. 
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The Fourth Industrial Revolution, 4IR, has progressed the 
techno-economic cart to bring more disruptive, global, and personal 
force to innovations. 4IR emerging technologies, such as IoT, 5G, 
Big Data, Self-organising supply chains, Next-generation (DNA) 
Sequencing, Artificial Intelligence, and Blockchain, are significantly 
differentiable from the Third Industrial Revolution, 3IR and the 
Second Industrial Revolution, 2IR. Technologies for being duly 
more general and original. The more general a technology, the more 
flourish they bring to technical progress and economic growth. 
The more original a technology, the more refined it is; using more 
diverse domains of knowledge in technology is one way to make it 
more original. Originality and generality trigger newer products/
services and newer markets/people, respectively; for instance, 
generative AI has caught the imagination of employers for surgical 
excision of their customer service teams, just as some rudimentary 
AI application is already reaching all 3 billion Internet users. 

It must be admitted that these technologies are similar to their 
3IR roots. However, their extra thrust lies elsewhere – more 
science (new and refined) and more rapid innovations (shorter 
‘Technology Cycle Time’). Technology Cycle Time is broadly the 
period in which technology lives in its original suit. It involves the 
invention of technology, its justification as superior, purchase and 
deployment, sustenance/maintenance, and till the emergence of 
a better technology. In a way, 4IR is a ‘general purpose (sci-tech) 
ecosystem’, so vastly expansive that it will underpin infinite ‘plug 
and play’ choices for people.     

Soft is finally the hard, new power
The feminisation of humanity is undeniably set. Multiple gender 
recognition is steadily mainstreaming. Corporates are softening 
institutional culture to retain one and all, despite customers picking 
up the cost of the slack (is there ever a free lunch). The notion of soft 
power still has its believers in the conduct of international relations, 
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especially made possible in the times – of collective climate response, 
the Internet, global supply chains, migrations, etc. In many sections 
of societies across nations, soft is becoming quite aspirational, being 
equated with being wise. 

The soft power in  the digital age is on another plane. 3IR was hard 
powered, and 4IR is soft powered – driven by mostly soft – software 
codes, digitalised data, mathematical models, self-correcting codes, 
cloud storage, non-resident stored procedure codes, soft reboots, 
soft memory boxes, and more, and new softer dimensions. 

Is there a softer of the soft? Yes, mathematical models! Besides, 
mathematical objects (numbers to proofs) are the steel of every 
example of the aforementioned soft dimensions.  

Indeed, as 4IR becomes an integral part of all of us, it is no 
exaggeration that humankind is mathematising.

The shreds of evidence of steadily mathematising humankind are 
overwhelming. 

Technology – The embodied mathematics

Technology is the outcome of applying established scientific 
knowledge at a given point in time. It manifests as tangible products 
(such as water in a tap or pen) and intangible services (such as software 
codes, and Internet search engines). Regardless of form—whether 
physical (as in a pen) or digital (like Google’s search engine)—all 
technology is governed and controlled by mathematical principles. 
For instance, a pen: its ink flow, the pressure required on its tip, 
and the design of its grip, etc. are all governed by mathematical 
parameters. Any sudden deviation in the established mathematical 
parameters would make the pen unusable. Likewise, something 
as intangible as Google's search engine also demonstrates a deep 
mathematical structure behind its functioning, making it a 
fascinating subject to explore.
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Big Data Turns Simple into Great

Google’s search engine needs no introduction; it’s arguably one of 
the most popular technologies in use today. It is well known that 
the engine employs a simple algorithm for arithmetical count, 
called PageRank, to assign a 'relative importance' to webpages, 
determining their rank across millions of websites. For the curious, 
the PageRank algorithm does not ‘see’ the contents of web pages for 
ranking. Instead, it measures their popularity by evaluating factors 
like how frequently they are visited, their link structure, and how 
often they are hyperlinked by other pages.

Mathematically, PageRank assigns webpages a score between 0 
and 1, representing a probability. A PageRank of 0.5 would imply 
that there is a 50% chance that a user clicking on a link (for certain 
keywords) would lead to that webpage. However, the process of 
computing the PageRank score is more complex than a simple 
probability computation, The algorithm continues to evolve, leaving 
us constantly speculating about its exact workings.

PageRank is a specific-patented process for ranking webpages. 
In addition to this, Google uses other methods, such as the 
mathematical model known as the Markov chain. A model is simply 
a quantitative relationship between variables—like the formula for 
the circumference of a circle in terms of its radius. The Markov 
chain model is based on probability. It represents a sequence of 
possible future states or situations, where the transition from one 
state to another occurs randomly, and each transition has a specific 
probability associated with it. It is especially useful for predicting 
changes in systems that evolve over time.

The strength of the Markov chain lies in its simplicity. It predicts 
the next state or step based solely on the current situation, without 
needing any information about how the current state was reached. 
Markov chain mathematises the relationship of the change in such 
a way which makes it ideal for real-time decision-making, such as 
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finding alternate routes during a traffic jam or choosing optimal 
communication paths in a network. Remarkably, the accuracy 
of these predictions, based only on the present state, is nearly as 
effective as predictions made using knowledge of all past situations.

Public key encryption forms the mathematics foundation of 
Blockchain technology. One of the most popular applications of 
Blockchain networks – cryptocurrencies – is so deeply rooted in 
mathematics that they may be thought of as “mathematical money.” 
Their creation and value sustenance is a mathematician’s delight. 
It involves very complex mathematics and computational methods. 
Expectedly, it has led to the development of mathematical models 
with applications beyond cryptocurrencies; the models used for 
pricing cryptocurrencies are so expansive and exhaustive that they 
could be used to estimate the ‘market (or reasonable) value (price)’ 
of many things. 

Real-world is So Much Calculus

The fundamental connection of calculus to everything beyond 
straight and standard geometry (non-linear and non-standard) 
prompts that 3D printing technology must be drenched in 
mathematical soundness. The dynamical properties of objects to 
be 3D printed, such as the strength of the initial conditions/steps/
formations, shapes, stability of the entire print, and the sharpness 
of the contours, are just some dimensions that must withstand the 
scrutiny of mathematical modelling.  Differential equations are 
extensively used in the software employed in 3D printing.

Big Data Reading and Management

Technology discussions are incomplete without taking a peek 
into how TikTok redefined timelines to become one of the top 
social media applications. Eleanor Cummins, a freelance science 
journalist and an adjunct professor at New York University, brands 



Mathematising Mathematics    31

TikTok’s algorithm as “all-knowing”, and contrasts it with Facebook. 
She notes, “Whereas Facebook asks you to set up a profile, and hand 
over a treasure trove of personal information in the process, TikTok 
simply notices—or it seems to.”   

 TikTok exemplifies how Linear Algebra, a relatively simple branch 
of mathematics, is rightly recognised as the “mind of machines” 
(facilitating machine learning). In this context, Eleanor accurately 
describes how mathematics has “flattened humanity into a series of 
codes.” This invisible hand at work, is akin to a supernatural force, 
moving and shaking everything we experience in our technological 
world.  

New mathematical modelling is also redefining medical 
diagnostics. For instance, MRI machine designs are problematic for 
claustrophobic patients and are noisy for everyone. Speeding up the 
scanning process has been a top priority in MRI research. Recent 
mathematical breakthroughs have come to the rescue of patients, 
doctors, and biomedical researchers. Mathematics made high-
fidelity compressed sensing, a reality by compressing patterns of ‘0’ 
in captured digital images, a technique commonly used to reduce 
the file size of MP3s and JPEGs. As a result, MRI scans that once 
took 5 minutes can now be completed in just 30 seconds using data 
compression models.

Mathematics is becoming an even more integral part of our daily lives.

Science – The divided house
Natural science is the body of knowledge that codifies the universal 
principles governing both living and non-living aspects of nature, 
as they operate in, on, and around the Earth. This field is divided 
between mathematised sciences such as physics and much of 
chemistry and descriptive sciences, notably a significant portion of 
biology. Additionally, all biological and medical technologies are, 
by definition, mathematised; drugs, blood tests, scans, and similar 
technologies are deterministic when aligned with clinical diagnoses.
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Mathematics serves as the sole language of physics, with a thriving 
community of mathematical physicists dedicated to the mathematical 
foundations of theoretical physics. Mathematical concepts and 
objects are the tools for conducting thought experiments in 
theoretical physics. Any discovery and development in physics are 
inherently mathematised, whether theoretical or experimental. 
Viable experimental setups rely on technology, and mathematics. 
For example, a prominent area of research in physics, quantum 
mechanics, is already such that a rigorous description of quantum 
mechanics is purely mathematical.

Natural science is the body of knowledge that codifies the universal 
secrets of both living and non-living nature, as it operates in, on, and 
around the Earth. It is evenly divided between mathematised sciences 
(such as physics and much of chemistry) and descriptive sciences 
(a significant portion of biology). Additionally, all biological and 
medical technologies are, by definition, mathematised; drugs, blood 
tests, scans, and similar technologies are deterministic when aligned 
with clinical diagnoses.

Mathematics is already the sole language of physics, and a thriving 
community of mathematical physicists is focused on the mathematical 
foundations of theoretical physics. Mathematical concepts and objects 
are the tools for conducting thought experimenting in theoretical 
physics. Any discovery and development in physics are automatically 
mathematised, whether theoretical or experimental; viable 
experimental setups are the work of technology, and mathematics. A 
prominent area of research in physics, quantum mechanics, is already 
such that a rigorous description of quantum mechanics is purely 
mathematical.

The Long and Short of Mathematics and Science
The story of theoretical chemistry mirrors that of physics; mathematics 
is the medium for its thought experiments. This discipline draws from 
physics, mathematics, biology, and computing to further investigate 
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and simulate molecular behaviour, develop new molecules, and 
advance new theories.

Biology, like other sciences, is also gradually adopting the language 
of mathematics, although it is not as mathematised yet. This is due, 
in part, to our ongoing need to understand much more about both 
our commonalities and unique characteristics. Biology examines 
the physics and chemistry of living beings, while the latter two fields 
focus primarily on the non-living world. The essence of life remains 
mysterious, and whether we fully comprehend it as humans or through 
AI remains to be seen. However, the secular trend is undeniable—
biology is becoming mathematised; albeit slowly but steadily.

The Cognitive Mathematisation of Science
Interestingly, the cognitive mathematisation of science began with 
Galileo, who integrated mathematics and astronomy (and later 
physics). It is worth noting that what we now call science was known 
as natural philosophy during his era, a term used until the early 
nineteenth century. His perspective on mathematics as the language 
of science remains the last word on it to date. He referred to nature’s 
working metaphorically as the ‘book of nature’ which could only be 
read through mathematics.

To Galileo, mathematics was the language of nature; he saw a 
mathematised nature. He further emphasised that a philosopher 
must also be a mathematician, and in the process, he separated 
‘pure mathematics’ from mathematics used for understanding 
the real, physical world. In the early seventeenth century, he 
recognised that nature's mathematical workings were too complex 
to be easily grasped and appreciated by most people. This view also 
acknowledges that mathematics was highly idealised in a world 
where speed and shape vary infinitely (astronomer as he was).
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Mathematics as the Code for Order
In what may be seen as an extended interpretation of Galileo's views 
on mathematics, he argued that mathematics serves as a means 
of simplifying the complexity of nature and abstracting what is 
physically undefinable. Without mathematics, how could we even 
attempt to paint a picture of the universe in mere "words"? The 
mathematical language of his time was predominantly geometric, 
whereas the prose of natural languages was often too verbose to 
capture nature’s complexity. Galileo believed that mathematics 
was the only way to decode nature's existence, leaving no room 
for ambiguity or the “play of words.” His belief in mathematics was 
almost metaphysical; he argued that humanity would be much worse 
off without the mathematical order of the universe, which is for us 
to decipher. In his words, “Nature is inexorable and immutable; it 
never violates the terms of the laws imposed upon her.”

He maintained that natural languages, best suited for scriptures, 
allow for interpretation and contexts that can be understood by 
all. In contrast, nature is constant for everyone at all times, but it 
requires mediation to be "read," and this mediation is accomplished 
through mathematics. Galileo’s conviction and enthusiasm for a 
mathematised science created a mystique around mathematics that 
transcended domains of knowledge and sparked a general academic 
reevaluation. As Hardy Grant elaborates in his book Turning Points 
in the History of Mathematics, “The clarity of ideas and the certainty 
of inference characteristic of mathematical thinking became beacons… 
providing a model for those who would organize and expound their 
realms.”

Four centuries later, nature—and therefore humankind—must 
be far more mathematisable. 

The three sciences are steadily being unified through mathematics!
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Research – Halo to hello
This post is not the space to talk eloquently about how scientific 
research is mutating; several tomes around it are already on the 
shelves. Instead, I would like us to explore instances of new scientific 
discoveries that are almost entirely driven by mathematics, and how 
the proportion of purely descriptive scientific knowledge is rapidly 
shrinking. I believe the future may pose challenges for securing 
time and money for hypotheses that are non-mathematisable. 

Scientific research is advancing at an unprecedented pace due to 
generative mathematical modeling and ever-expanding computing 
power—both of which are mathematical marvels. Notably, this 
research revolution has many faces: “real-world measurements 
negating the need for traditional experiments and simulations,” 
“continuously learning, generative artificial eyes and minds replacing 
human observations,” “mathematical models capable of identifying 
patterns in real (Big) data —whether new, old or highly diverse,” 
“more seamless collaboration between scientists and mathematical 
modeling,” and “the degentrification of research, moving away from 
high costs and reliance on the best minds.”

Mathematising Reality – Simplifying Possibilities
The recent achievement of complete genome sequencing, in just 
over five hours—a Guinness World Record—exemplifies the 
cutting-edge intersection of research, innovation, and mathematics. 
It also underscores the growing impact of mathematical models 
and computational power, which require massive data processing, 
adding to the climate threats. A new ultra-rapid genome sequencing 
method developed by Stanford Medicine scientists, and partners, 
has made it possible to diagnose rare genetic diseases in less than 
ten hours—a previously unimaginable feat. Professor Euan Ashley 
in the team reported: –‘This diagnosis (took place) in about the 
time it takes to round out a day at the office’. This stands in stark 
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contrast to the few weeks typically considered “rapid” for genome 
sequencing by most clinicians.

Genome sequencing reveals a person's complete DNA makeup, 
offering crucial insights into diseases rooted in genetics. This leads 
to faster and more precise diagnoses, targeted treatments, and 
significantly reduced patient costs.

The mathematical brilliance behind this breakthrough lies in the 
'“long-read” sequencing technique (that is, Whole-read); which 
reads the entire genome at once. In contrast, the standard genome-
sequencing techniques simplify computational and mathematical 
challenges by slicing the genome and then building it again after 
analysing the sequence of DNA base pairs in each slice. This whole-
read method has about a 12% higher success rate than the average 
rate for diagnosing hard-to-detect diseases.

Another critical factor in this achievement was the unprecedented 
speed of data processing. The sheer volume of genomic data had 
overwhelmed the facility’s computational systems. Professor Ashley 
candidly worded the situation: (we had to) “completely rethink and 
revamp our data pipelines and storage systems” to efficiently handle 
and process such massive datasets at the required speed.

To grasp the scale of this data, a single human genome contains 
3.2 billion DNA base pairs, each encoded by two bits, resulting 
in about 800 megabytes of digital data. But, for the sake of 
uncompromised accuracy, genome sequencing is repeated multiple 
times, often expanding the data to tens of gigabytes per individual. 
Processing such large amounts of data takes time. To address this, 
scientists compressed genome data by focusing on differences from 
a reference genome sequence, bringing the data down to just a few 
megabytes, making it much more manageable. 

Generative Reality: Virtualising Using Mathematics
Generative reality, driven by mathematics, is revolutionizing drug 
development. AI is now used to train neural networks to test entirely 
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new molecular structures for their interaction with targeted bacteria 
or viruses, eliminating the need for physically creating molecules 
or setting up experimental environments. These AI platforms can 
screen over a billion molecules to assess their effects on a pathogen, 
a scale far beyond the capacity of traditional physical methods, 
which typically test only a fraction of that number.

Reducing Research to Data-peered Reasoning
AI is fundamentally transforming the research process—data now 
serves as a strong foundation for generating and testing hypotheses. 
Experimental setups are brought in only as needed, primarily for 
evidence and to validate specific aspects. Massive longitudinal 
and latitudinal datasets (“Big Data”) allow ‘AI software’ to detect 
patterns, if any, and articulate them based on their training. The AI 
continuously reanalyzes the entire dataset from multiple angles and 
designs, yielding deeper insights and more robust results.

In fact, AI can now generate hypotheses directly from data 
without the need for training on predefined models, theories, or 
possible real-world correlations that the data may represent. All that 
is required is the high-level computing power and basic statistical 
tools to begin identifying patterns and generating hypotheses in the 
context of the data’s real-world correspondence.

Chris Anderson, former editor-in-chief of WIRED, in his visionary 
article, way back in 2008, ‘The end of theory: the data deluge makes 
the scientific method obsolete,’ predicted, this shift that in the age of 
petabyte data and supercomputing, the traditional scientific method 
could become obsolete, with experimental evidence for hypothesis 
testing becoming unnecessary and inefficient.

Anderson emphasized that at the petabyte scale, information 
transcends traditional three- and four-dimensional models, 
evolving into “dimensionally agnostic” statistics. He predicted 
that, in the future, the hypothesis-driven scientific method would 
eventually be just one of many approaches to studying the world. 
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The key, he argued, lies not understanding why things behave as 
they do, but tracking and measuring what it is with unprecedented 
accuracy. The “tracking and measuring ” refers to Big Data—the 
extensive, real-world record of the actual behaviour of the target 
object(s) or situation(s).

While simulations may still be desirable, they are no longer 
essential. AI now can dig deeper into data and identify patterns, 
gaps, anomalies, and dimensions beyond human capabilities. 
However, to be true and fair, the process of extracting meaningful 
insights from Big Data requires more than just mathematical 
prowess and computational strength—it also demands human 
insights, intuitions, and imaginative rendition.

We Must Get It Right This Time
The evolving reality for the scientific community is that with lots and 
lots of data —potentially infinite—we could hypothetically recreate 
all the scientific knowledge to date. Nature's ways are constant, and 
science is merely our attempt to read and explain it. Yet, there is 
an insurmountable gap in capturing infinite data from nature. The 
nature of this infiniteness is exemplified next.

The upcoming Square Kilometre Array (SKA) Telescope located 
in Australia and South Africa is an excellent example showcasing 
the quantitative sense of the infinite nature of (one) Big Data that is 
powering the new hope and promise. SKA is an intergovernmental 
project designed to explore and take a peek into deep space to gather 
data to understand better some of science’s most complex questions 
and humankind’s oldest mysteries, including the potential existence 
of intelligent life elsewhere in the universe. An analogy to illustrate 
the vastness of Big Data consider this: the SKA will generate an 
amount of data in just one day that is equivalent to the entire planet's 
data output in a year!

And there are infinite such ‘Big Data’ that we need ahead!
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There is More Than Big Data Vacuum
Is there a spanner in the works for the ‘Big Data promise’?
Yes, there is – Mathematics.

The tools used to analyse Big Data often have elaborate 
assumptions and limitations that are not always easy to register and 
navigate even for mathematicians and scientists. All mathematical 
models rely on specific assumptions about the data, which may 
not hold in real-world scenarios (for example, assumptions of 
independence or linearity between data points). Mathematical 
representations often simplify complex, real-world phenomena, 
which can result in ‘overfitting or oversimplification’ of contexts 
within the mathematical framework.

Moreover, there is a tendency to rely too heavily on these models, 
turning them into “black boxes” that obscure our ability to critically 
evaluate the conclusions or predictions they generate.

So, while Big Data holds immense promise, challenges remain—
particularly in terms of the limitations of mathematics and the 
difficulty in securing hi-fi, comprehensive, and complete data 
necessary for its full potential to be realized.

Anthropocene = Research avalanche
All this brings us to a growing impulse to recharacterise the 
Anthropocene era around research (and innovation) – it is a 
peerless capability enhancement for individuals, communities, and 
humanity as a whole, positioning research as a remarkable source of 
positive impact on our lives, Earth, and the environment. With the 
unprecedented democratization of research, in the times to come, 
individuals and communities in the future will be far better informed 
and more empowered to assert the most optimal solutions.

The power of diversity, untrained expectations and goals, lived 
and unique experiences, unfettered wants, and needs, and the 
imagined world we wish to create and dwell in, will all become 
sources of valuable and ‘good and grand’ research.
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This shall also include the salutary effect of liberating scientists 
from the constraints of pre-research grants and permissions. And 
this change is already on the horizon. For instance, as Eric Schmidt 
describes, there are ‘self-driving labs’—AI-powered virtual research 
labs that people can hire.

And what is the potential of AI-picked research? All this does 
herald the rise of AI as research sovereign, with AI analytics 
suggesting and accepting research agendas for the future.

In short, all of this forms the perfect substrate for recommitting 
ourselves to the goal of harnessing the explosion of scientific 
knowledge for the benefit of all of humankind, all!

Research is following its master – as the theoretical sciences expand, 
research increasingly mathematises.

Innovation – The New Socio-Economic Sprint	
What research is to science, innovation is to technology! And 
there is a data-led radical shift in the process, value-addition, and 
mathematisation of innovation. We already live in a world where 
intensely Big Data-driven companies are likely to be several times 
larger in top line, bottom line, and customer service compared to 
traditional technology companies.
We will now explore some well-known examples of innovations 
driven on the back of Big Data.

Google – Data-driven Business Design
Google is the world’s most ‘data-denominated’ business and 
the largest user of Big Data technologies. It showcases all that is 
possible with digital, mathematised, Big Data innovations – high-
performance organisational design and culture, rapid product 
redefinition, evolving revenue models, massive post-sales support, 
and a formidable product pipeline. Yet, all these do not imply that 
Google gets it all right and thriving. There is much more to valuable 
innovations than just scale.
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Google’s pioneering work in advertisement-backed business 
models is essentially applied mathematics. It bets on generating 
large and varied datasets from user behaviour, continuously 
developing and tweaking analytical models to mine the user data, 
and optimising product features to service a large population at 
manageable costs. To best sustain this organisational DNA, Google 
has also become ‘employee-centred’ in several groundbreaking ways 
- many of which are part of public history.

Google Translate – Data-powered Thinking 
Google’s Universal Translator, unveiled in 2023, is truly a 
technological marvel. It can seamlessly live-translate video content 
across 300 languages, syncing the lip movements in the original 
video for each translated language. By 2023, Google had amassed 17 
years of longitudinal data on nuanced translations made by native 
speakers. The importance of Big Data is clear, especially in how the 
Translator works more efficiently for "high-resource languages" 
such as German, where there is a wealth of written material to train 
the AI.

However, translation performance in "low-resource languages" 
(those with limited availability of literary and communicative 
reference texts) tends to be less satisfactory. Despite this, improved 
algorithms continue to enhance performance. In the end, Big Data 
plays a decisive role in the quality and scope of AI applications.

Big Data: Both an End and Many New Beginnings
Peter Norvig, a distinguished researcher in human-centered AI, 
aptly sums up the role of algorithms (software-based mathematical 
models) with his famous quote: “Essentially, all models are wrong, 
but some are useful.” If this seems abstract, Chris Anderson’s 
perspective clarifies the importance of Norvig’s approach. He 
highlights the rapidly emerging reality where computers rapidly 
learn models from data, bypassing the need for humans to derive 
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models through extended contemplation. In the end, all knowledge 
should be thoroughly logicalisable and mathematically modelable. 
However, we still lack the mathematical models to interpret many 
types of Big Data, and we do not have the necessary data to drive 
data-powered research and innovation in most fields.

Not surprisingly, Google Translate improves its algorithms by 
generating 'synthetic parallel data'—essentially creating data to 
fill gaps. The system leverages lessons from same-family language 
translations, multilingual translation, better identification of ‘noise’ 
or missing genres in training data, and more refined integration 
of different dialects. The remarkable aspect of these algorithms is 
their ability to 'think in language.' They are highly trainable. Given 
sufficient Big Data, Google Translate could translate Hindi to Farsi 
as confidently as it would translate Arabic to English. Of course, 
this "thinking" is rooted in mathematical logic, a testament to the 
intrinsic connection between mathematics and languages.
Amazon, Netflix, Uber, Coca-Cola, McDonald’s, Zomato, Starbucks, 
and MasterCard are just a few companies following this data-driven 
path pioneered by Google.

But What Is Big Data?
The Jack Ma-founded Ant Group in China offers one of the best 
examples of Big Data’s potential, closely mirroring Google’s data-
driven existence. Ma created a bank without any capital investment, 
and it became so successful that it was poised to debut as the 
most valuable listing on any stock exchange—until government 
intervention halted its progress. Ant Group’s online bank, MYbank, 
extended credit to small and micro-businesses, traditionally 
overlooked by banks. It may well be the most successful example of 
'fintech.'

A global revolution in financial inclusivity is unfolding, enabled 
by intelligent, automated systems that collect Big Data from 
across the entire business ecosystem. This data includes real-time, 
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authenticated, and transactional data from financial actions, social 
media posts and interactions, customer and product profiles, 
and more about the business. Big Data enables a comprehensive 
approach to provide personalised economic and financial solutions.

For instance, small business borrowers in China applied for loans 
through their smartphones with just a few clicks and could receive 
cash almost instantly upon approval (the majority of applicants were 
approved on varying terms). No need for meetings with bankers, 
voluminous financial records, or references. The entire process took 
no more than three minutes, yet the default rate was less than 1%, 
and the cost of loan processing was just half a dollar. The online 
application and risk management system could collate and process 
over 2,500 pieces of information on each borrower within those 
three minutes. This intense and invasive yet effective use of 'legal/
formal' access to Big Data of the private businesses is worthy of 
attention.

China’s social credit system is a key source of ‘credible’ information 
on loan seekers' bankability, allowing for rapid assessments of 
creditworthiness. Social credit is a national 'trustworthiness' 
rating system for individuals and corporations. Initiated in 2014, it 
envisaged a six-year plan to build a system to rewards actions that 
foster trust in society and penalizes those that undermine it. What 
makes the system unique is that social credit is built on two types 
of information: traditional financial creditworthiness and 'social 
creditworthiness,' based on a larger swathe of everyday living.
Big Data Can Power Fairness
In an article for Mint, Jun Lou of Bloomberg reported a case 
involving the use of social credit data. The article highlighted how a 
small business owner might struggle to secure a loan due to a drop 
in their social credit score, which could result from something as 
trivial as failing to return a borrowed umbrella. Digitally collecting 
such information in a public database is yet another example of Big 
Data’s far-reaching impact.



44     Humankind is mathematising 

The bottom line is a true positive-sum game: healthy profits for 
MYbank and higher top line and bottom line for the borrowing 
small businesses, with millions of entrepreneurial dreams becoming 
reality.

The Repositioning of Innovation
Innovation is now the strategy! It’s no longer just an ideal goal but 
the core business itself. Products and services are merely targets of 
innovation while being innovative and inventive has become the 
most critical strategy for organizations to survive and thrive in the 
future.

Big Data is reshaping innovation in several key ways. It brings 
together unstructured and legacy data (such as paper records and 
images), 360° data views, and contextual auto-recommendations. It 
also drastically reduces the cost of prototyping, enables co-creation 
with users, and scales innovation to the masses, reducing collective 
waste and driving wealth democratization. Innovation must now 
also account for the knowledge created by Big Data, as well as by 
‘artificial persons’ like bots, robots, and IoT devices.

Big Data is now an organisational soft infrastructure; the fuel for the 
fire that is innovation!

Everyone a (net) producer, dignified
This is my favourite instance of how humanity is mathematising. 
The technology-driven era, dominated by mathematics, is also the 
most ‘human’ of all time. Mathematised intelligence particularly 
Artificial Intelligence is powering a truly human revolution. And, 
no matter the challenges, this unprecedented revolution will 
materialise. It is grounded in the mathematised human mind and 
the reform of mathematical education to ensure that everyone 
succeeds in the current K-12 curriculum (trust for now that the 
"how" is simpler than the simplest.) It is predicated on augmenting 
human intelligence with artificial intelligence.
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Thanks for reading Cent Percent Mathematics! Subscribe for free 
to receive new posts and support my work.

Augmented (human) IQ – The Future of AGI
The effective, expansive, and explicit possibilities of complementing 
and supplementing our IQ with artificial intelligence is 
transformational in a few ways. First, it is here and now – humankind, 
as a whole, can close the widest disparity in educational opportunities 
for one and all, in a matter of years. The current formal education 
system is broken, and the only way forward is through 'artificial 
human' solutions, such as enabling a personal, ‘model-learner’ 
academic peer for everyone. However, it must be noted that current 
technology applications in education (Edtech) are fundamentally 
flawed—they are part of the problem, not the solution. The specifics 
of this issue, however, are beyond the scope of this post.

Second, and more importantly, the rise of AGI (Artificial 
Generative/General Intelligence) sends a loud and clear message 
about what ‘Real Intelligence’ (humans) must prioritize, especially 
in education: ensuring that every child and adult succeed in 
mathematics! Mathematics is the only domain of knowledge that 
can break the jinx of the vicious circle of poor education and put an 
end to both formal and informal education system that produces 
adults with suboptimal potential and capabilities. This is even more 
crucial now, as the rising cost of education and diminishing fiscal 
support make quality education, including preschool, increasingly 
out of reach for young parents around the world. 

How is mathematics going to make a difference? Mathematics is 
a priori knowledge; we are all born with the foundational abilities 
for learning it—rationality and logicality. It must be ‘taught’ in the 
way we learn our first language, the mother tongue; primarily at 
home and within the community. In truth, mathematics cannot 
be taught in a conventional sense; it is learned culturally through 
lived experience. Expectedly, it is not human to be left behind in the 
language that is mathematics. 
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However, humanity is struggling with what is often referred 
to as ‘school mathematics.’ Whatever the K-12 system defines as 
mathematics does not represent the (real) mathematics, the language 
of the ‘real world’ (the language of physics – the most universal 
science, for instance.)  K-12 mathematics is overly abstracted, 
rigourised, ‘generalised,’ and often ‘meaning-less,’ making it unfit for 
educating children, who learn best from ‘near or the real/concrete, 
to far or the abstract’. To be fair, abstract mathematics is invaluable 
for engineers, technologists, scientists, and researchers, but it is not 
effective for learners (at all levels, perhaps.)

Magic of Mathematised Minds
To cut to the chase, “mathematics as a language” is the elixir, 
and the trailblazing snowball that leads to a virtuous cycle of 
multidimensional progress. This is especially so because AGI 
is already brilliant at methodised mathematics; it is in the 
mathematisation of real-world contexts where we can do better 
significantly for a long time to come. Indeed, a mathematised mind 
is best equipped to make the most of AGI, both today and for a 
generation to come. AGI represents the best news for the current 
state of humanity. Its outcomes—text, voice, video, code, design, 
plans, and whatnot—may serve as the foundational platform for 
human thinking and efforts, Setting a much higher bar for human 
productivity and achievements.

Moreover, all technological revolutions face significant challenges 
due to the necessity of re-educating everyone for the shift. 
Fortunately, AGI also serves as an incredible learning engine! It acts 
as both the the fuel and the fire. Each of us can “learn and live,” 
endlessly, on the AGI soft infrastructure. AGI could very well be 
the (Terminal) General Purpose Technology (GPT) for humankind.
A mathematised humanity is the game-changer, paving the way for 
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a new sustainable future—socially, ecologically, economically, and 
politically!

4IR – The Economic Face of AGI
AGI is inching towards becoming the fulcrum of the Fourth 
Industrial Revolution (4IR) —a fast-consolidating new economic 
system. As a force multiplier, AGI represents an unmitigated blessing 
for individuals, societies, nations, and humanity as a whole. If AGI 
falls short of its promise, it is due to the lack of “worthy, competing 
humanity.” Our education system is producing adults who are 
significantly “under par” compared to AGI's current capabilities. 
Furthermore, AGI will face strong resistance if we do not align our 
education system with the reality of AGI in our midst.

The roots of AGI in 4IR are democratising access to essential 
socio-economic soft infrastructure, including education, health, 
and ease of doing business. Humanity has never before extended 
such a welcoming hand to all. This marks the most significant 
difference between the Third Industrial Revolution (3IR) and the 
Fourth Industrial Revolution (4IR)—a shift from a top-down to a 
bottom-up approach.

Most notably, 4IR “softens and virtualises” the fabric of 
value creation and production fabric. Economic resources and 
opportunities expand seamlessly, capitalising on and cultivating 
individual productive instincts and cultural propensities. Strikingly, 
the DNA of 4IR is as biological as it can be—it represents a double-
helix economic miracle that combines two distinct models: the 
proto-industrial system (which involves large-scale production 
without the traditional “factory model,” powered by independent 
“Own Account Enterprises”) and the intelligent-industrial system 
(a post-factory model with globally networked “Own Account 
Enterprises”).
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Every Family an Economic Sovereign
Undoubtedly, the universal unfolding of the Fourth Industrial 
Revolution (4IR) may still besome time away, but it is most 
eagerly awaited for the effective reinvigoration of “Own Account 
Enterprises,” where every adult serves as a producer, contributing 
economic value. No one is left behind and designated solely as a 
consumer; rather, every adult becomes an economic sovereign. 
Ensuring economic surplus for every adult is the wellspring of 
dignified living. Even the poorest individuals assume multiple social 
roles—such as spouse, parent, child, sibling, neighbor, and citizen—
and each of these social constructs, identities requires some level 
of financial means to fulfill, helping to keep the society duly oiled. 
Recall, society is a biological necessity for every one of us, not just a 
desirable concept.

Economic Dignity Guaranteed
Indeed, guaranteeing human dignity stands as the most revolutionary 
promise within the realm of possibilities offered by the 4IR. The 
vision of a world with over 8 billion+ dignified individuals surpasses 
our current imagination. It encompasses the broad socio-economic 
integration of all humanity, bridging divides between rich and 
poor, rural and urban, men and women, developed and developing 
nations, and other cultural and economic divides. Given that the 
4IR represents a highly quantifiable transformation, achieving 
dignity for all can be mathematically structured.

Human Dignity Rests on Economic Dignity
It would be no exaggeration to see the idea of dignity as inherent to 
being Homo sapiens. Yet its universal recognition has been relatively 
recent, notably enshrined in the 1948 United Nations Universal 
Declaration of Human Rights. However, in contemporary times, the 
concept of human dignity is under severe scrutiny, being challenged 
and violated like never before, even as we consider ourselves the 
“best educated” humanity in history. Reports of abuse, violence, 
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discrimination, humanitarian crises, and authoritarianism are 
prevalent across nations. 

Nevertheless, human dignity encompasses far more than the mere 
absence of these adverse conditions. We are gradually coming to 
understand how deeply it is rooted in the economic empowerment 
of individuals. We must rectify this situation or risk living in 
the indignity of a subhuman existence. Worse, our acceptance 
of indignity for the majority could become an irreversible and 
unredeemable condition.  

It is important to remind ourselves that governments—
unfortunately, the only functioning human collective—cannot 
solely sustain the dignity of the middle class, let alone provide 
adequate support for those living in poverty and deprivation. 
Developed nations are already struggling with unbridgeable fiscal 
deficits, which has resulted in their per capita social investments 
dwindling. Many developing nations have already reached the 
brink of fiscal collapse. For instance, the Australian state of Victoria 
recognized for its social liberalism, announced the withdrawal of 
its bid to host the 2026 Commonwealth Games, citing insufficient 
financial resources.
A Common Market for 8 Billion+
Humanity must conspire to leverage technology as never before. We 
should collectively strive for the emergence of "Human Businesses"—
next-generation enterprises dedicated exclusively and profitably 
to serving the common market of 8 billion+ people (similar to 
the European Union's common market). These businesses would 
focus solely on creating products equally valuable to all 8 billion 
individuals, eliminating the need for ‘bottom-of-the-pyramid’ 
products; intensely reconnecting rich and poor through economic 
integration.
The crux of it all - individual dignity cannot exist without assured 
economic dignity. AGI and the Fourth Industrial Revolution (4IR) 
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may be our best opportunity to realise 4 the beyond-dream ‘peaceful, 
prosperous, and (continuously) progressive’ humanity. 
Universal human dignity requires mathematising humankind.

A twist to the tale – We all use deduction, all the time
Signs indicate that mathematical and logical thinking is inherent to 
humans as a priori knowledge – no specific learning or training is 
necessary to deploy it in everyday situations. Academic application, 
however, might require formal education. This innate ability 
naturally grows as we go about our daily routines. We are already 
somewhat mathematised, awaiting further honing and expansion 
through formalisation. The challenge lies in our dependence on the 
formal education system – curricula, textbooks, assessments, and 
teachers – which does not systematically introduce the thought 
process of deduction (and how it contrasts with induction, the 
scientific thought process).  

At a rudimentary level, evidence suggests that we share a 
sense of quantity with certain animals. Most animals exhibit an 
understanding of their physical capabilities, for example,  they 
displaying a sense of assessment of the length they can jump over 
with ease and do not attempt jumping over a wider drain. Similarly, 
research indicates that some animals, like crows, can differentiate 
among 1, 2, 3, and 4 quantities of something.   

Deductive reasoning is an authentic, powerful mode of thinking 
about conditions and situations, consistently applied in our daily 
lives. For instance, based on the boss's past behavior of consistent 
lateness to meetings, I deduce that today's meeting would not be an 
exception. Hence, I might arrive late without consequence. 

Observing that most questions in recent exams were from six 
out of ten chapters in the syllabus, I decide to focus solely on those 
chapters for my preparation.

Noticing a decline in orders for a particular product over four 
months, I conclude that the company needs to invest in new 
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products. Recognizing data sciences as the fastest-growing career, I 
plan to transition to become a data scientist. 

However, deductive reasoning is not always correct due 
to flawed premises and overgeneralisation. For example, Ill-
informed premises can lead to incorrect deductions. For 
instance, assuming that all green-leaved plants need sunlight, 
and therefore a red-leaved plant does not, (and it could be kept 
wholly indoors). This  overlooks the fact that need for sunlight 
is not solely due to colour of leaf, but due to the presence of 
the green coloured pigment chlorophyll in such leaves. The red 
leaves also have green pigment chlorophyll but that is masked by 
overwhelming presence of  red pigments in those leaves. 

Misguided assumptions also affect decisions. For example, 
we are familiar with the fact that objects in an open space 
gradually cool down to reach the ambient temperature due to 
the dissipation of heat from the warmer objects. It is commonly 
believed that to maintain the warmth of a liquid for an extended 
period in a room, we need to heat it to its boiling point and then 
cover it. This is a typical practice to sustain warmth in an open 
setting. However, this approach is flawed. The speed at which 
heat is lost to the surroundings depends on the temperature 
difference between the liquid and the surrounding environment. 
The greater this difference, the faster the liquid cools to align 
with the ambient temperature. Moreover, the rate of cooling is 
significantly accelerated when this temperature gap is higher. It is 
essential to understand that all objects radiate heat in proportion 
to the fourth power of their temperature. 

Overgeneralisation can oversimplify complex situations 
and can lead to inaccurate conclusions. Overgeneralised idea 
that rural folks are inherently 'simpler' and 'sorted', hence, 
Aman, a recent migrant to a city, must also possess the same 
attributes of being 'sorted'. Assuming that because ABC is 
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deemed the cleanest and greenest city in the country according 
to a recent survey, my friends residing in a colony in this city 
must automatically be experiencing a high quality of life.  

Deductive reasoning is akin to solving a puzzle. Like puzzles, 
it requires a trained and informed mindset to solve. The process 
involves collecting all information about how to solve  puzzles and 
applying it to the specific puzzle at hand. This similarity between 
deduction and puzzles makes deductive reasoning a personal skill. 
Notably, detective work heavily relies on deductive reasoning.

Generally, deduction involves recognizing and applying a set 
of broader truths, assumptions, or principles to specific situations 
in order to arrive at the most favorable decisions or actions 
guided by this comprehensive framework. The effectiveness and 
success rate of detectives heavily depend on the thoroughness and 
comprehensiveness with which they gather all types of information 
and evidence, without prejudice to the perceived value of the 
information. Subsequently, they apply deductive reasoning to the 
facts and evidence to narrow down to the specifics of the case.  

It is interesting that many of us exhibit a strong and predominantly 
accurate intuitive and commonsensical approach when responding 
to emergent situations. The utilization of a subconscious logical, 
deductive reasoning process is undeniable in such scenarios. This is 
why deductive reasoning is a form of thinking prowess that cannot 
be easily artificially created and routinised. 

To better comprehend deduction, it is essential to juxtapose it 
with induction. In short, induction, often referred to as the scientific 
method, is the process by which research proceeds to discover new 
scientific knowledge. Hypotheses validated by adequately repeated 
'specific experiments' are utilized as general principles (laws) of 
science. In a sense, induction follows a bottom-up approach, while 
deduction follows a top-down approach to accumulating knowledge. 

However, it is through deductive reasoning, often termed the 
'mathematical route,' that many scientific mysteries are uncovered. 
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For instance, the expansive quantum field theory, purportedly 
regarded as one of the most comprehensive physical theories of 
all time, might await the development of the precise mathematics 
needed to unlock its secrets. Robbert Dijkgraaf, a mathematical 
physicist and the minister of education, culture, and science of 
the Netherlands (appointed in 2022), strongly advocates for the 
omnipotence of mathematics in understanding nature. He asserts 
that the workings of the universe follow an ordered and uniform 
mathematical structure, taking a bolder stance by suggesting that 
a proper mathematical comprehension of quantum field theory 
could potentially provide solutions to numerous unresolved 
physics problems.   

In summary, mathematical reasoning—deduction—is a common 
practice among all of us. It is a matter of formally acknowledging, 
encouraging, and refining what's already a part of our lives. 
Humankind is already at a certain level of mathematisation, and 
mathematised mathematics autonomously raises that bar. 

Another twist to the tale – Mathematisation of ‘social sciences’ 
The conversation up to this point must not imply that the ongoing 
trend of increasing mathematization is confined solely to science 
and technology. Despite living in highly science and technology-
driven times, our future is equally enriched by the mathematization 
of socio-cultural aspects of life and work. To this extent, STEM-
focused research, innovation, and businesses position themselves 
as self-appointed guardians of humanity's well-being, yet many 
recognize it as a mere facade.

The increased mathematisation of social sciences research is 
not a new phenomenon. The utilization of mathematics by what 
we term 'social media' is widely known. It is notably sophisticated 
and continuously refined and restructured. For instance, platforms 
like Facebook employ Big Data and algorithms to dynamically 
tailor the display of pages and content to individual users. Each 
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action of the user—clicks, likes, shares, friending, comments, and 
tags—contribute to and refine the Big Data related to the social 
behaviour of individuals, diverse communities, businesses (via 
their pages), and various other dimensions. These platforms utilize 
intricate, constantly evolving algorithmic tools, such as Affinity 
score, EdgeRank, Time decay, and Edge Weight.

Socio-cultural structures are incredibly diverse across societies, 
making it impossible to categorize and encompass any specific set 
of guiding principles for the mathematisation of social innovations. 
Comparisons can hardly be made between the pace and complexities 
of economic innovations. However, within the sphere of socio-
cultural life, there exists a unique potential for a tectonic shift in the 
quality of our lives—mathematising humankind for true democracy. 

Political philosophy, institutions, processes, and practices hold 
significant implications for societies. The mathematisation of 
governance institutions, predominantly in certain segments of 
the executive, often referred to as e-governance, was anticipated 
to drive us towards a more robust democracy. However, evidence 
from various parts of the world indicates a burgeoning executive 
that stifles the voices of citizens and opposition, conducts intrusive 
surveillance on numerous fronts, and fails to uphold airtight privacy 
provisions for citizens, community organizations, and businesses. 

Mathematisation is sine qua non for true democracy, yet it would 
never be sufficient for a nation if e-governance were the singular 
focus of the mathematisation of the political society. The most 
groundbreaking consequence of mathematising humankind lies 
in the democratic revolution within each country. Furthermore, 
mathematisation should guide us in establishing resilient, true 
democracies, a first-time opportunity for humanity. At the core of 
the unprecedented 'poly crisis' facing us lies the political and moral 
crisis—the failure of democracy.

Nurturing and sustaining true democracy involves numerous 
dimensions. Considerations include what constitutes true 
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democracy (as opposed to our current state), why we might seek 
it (its potential advantages), and the feasibility of its realization in 
current times (whether such a political revolution is attainable). In 
this context, the mathematisation of democracy stands as our sole 
hope to position society and citizens at the helm and in control of 
governance institutions, policies, and laws. 

Yes, e-democracy presents a distinct form of political 
organization within societies when compared to e-governance or 
e-governments. The latter, in its current form, restricts democracy 
by implementing unparalleled, comprehensive, and intrusive 
surveillance of citizens and societies in real-time. There exists 
an unhealthy and menacing imbalance in the information and 
information flow between citizens and government institutions 
and political parties. To establish the technological foundation of 
true democracy, the essential component is the mathematisation 
or logicalisation of core democratic processes. E-government will 
play a role, albeit in a manner that serves democratic objectives. 
Mathematisation of socio-cultural aspects of life is set to deepen.

The Rising Linear Algebra – A Conspiracy?
There is an interesting twist to the story of mathematics, us, and 
destiny! An inexplicable development seems to have turned 
everything upside down, as if the universe—and perhaps something 
beyond—has conspired to force mathematisation upon us all, 
once and forever. To me, this is humbling and presents conclusive 
evidence of how humankind is singularly mathematising. 

The must-know mathematics in the era of AGI (Artificial 
General Intelligence) is now accessible to everyone; it has become 
the ‘mathematics of the masses.’ A good grasp of foundational K-12 
mathematics has emerged as a fundamental gateway to unlocking 
the best possibilities AGI offers—whether for personal, social, 
community, or professional purposes. 
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Linear Algebra – the easiest real-mathematics
Mathematics has always played a central role in the story of life on 
Earth, and now, luck seems to favour it as its most approachable 
and practical side takes centre stage in its applications. Linear 
algebra, often considered one of the more accessible branches of 
mathematics, forms the fundamental framework for mathematical 
modelling in the development of AI applications. As its name 
suggests, it operates within the realm of linear mathematics. 
Therefore, all equations studied in this field are linear, meaning the 
variables are used in their ‘native forms’—raised to the power of 1. 
For instance, the equation  

a1x1 + a2x2 + ... + anxn = b represents a linear equation 
Where a1, a2, ..., an, and b are constants, and x1, x2, ..., xn are 

variables raised to the power of 1.
Being algebraic, linear algebra quantitatively expresses 

relationships. A given equation represents a unique relationship 
among the variables (varying quantities) it relates. For instance, 
the equation 5x + 2y = 9 expresses a particular linear relationship 
between the variables x and y. Here are a couple of examples of the 
possible interpretations of this equation:

•	 The total count of items, if there are 5 single items and 2 pairs 
of the same items, is 9.

•	 The total count of people, if there are 5 single people and 2 
couples, is 9

Countless other situations could fit this relationship. In general, a 
linear equation signifies that x and y can only change in a specific 
manner; every concurrent pair of values for x and y must always 
adhere to the given relationship.

We ‘solve’ such relationships to find the specific values of x and 
y that satisfy the relationship in the equation. The ‘solution’ for a 
linear equation means there is only one value for each variable. 
For instance, in the equation 5x + 2y = 9, there is just one specific 
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value of x and y (x = 1, y = 2) for which 5x + 2y = 9. This solution 
corresponds to both of the examples above.

In fact, any situation involving more than one simple variable 
requires the use of linear algebra to mathematically articulate and 
utilise it as a generalised model of relationship.

Big Data and Linear Algebra – Made for Each Other
Proficiency in understanding and employing linear algebra tools 
form the foundation for effectively utilising ‘big data’ to creatively 
tackle a wide array of scientific, technological, social, economic, and 
even political or governance challenges and objectives.

Linear algebra empowers us to envision, interact with, and 
manipulate n-dimensional scenarios—whether scientific, 
technological, social, and more—where each dimension represents 
a different variable. These variables collectively define the scenario. 
This illustrates why abstract mathematics is so powerful and 
appealing: its applications are limitless and expansively versatile.

Most people find it difficult to comprehend anything beyond 
three-dimensional space or objects. However, some—especially 
physicists—have ventured into visualizing four-dimensional space-
time combinations. While visualising higher dimensions may seem 
abstract, it’s not far-fetched to imagine scenarios in n-dimensional 
space, depicted as ordered data involving a list of n variables. This is 
one of the reasons linear algebra plays such a vital role in handling 
complex, multidimensional data in big data analytics.

A simple application of linear algebra would be estimating the 
price of a house in a city based on several features or variables, 
such as neighbourhood, number of rooms, floor area, floor plan, 
municipal law, landscaping, construction quality, amenities, etc. 
We would collect data on these variables for a lot of houses, along 
with their prices. This creates a multi-variable or multidimensional 
dataset, allowing us to predict the price of a house based on its 
specifications across these various factors. While we often use tools 
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like Excel to perform these calculations, we tend to overlook the 
underlying linear algebra that drives these price outcomes.

In our pursuit to comprehensively understand and model 
increasing volumes of data, we frequently augment the number of 
variables during data collection. Greater intelligence necessitates the 
inclusion of more variables. Consequently, making linear algebra 
grow in potency and usefulness for constructing progressively 
intelligent devices and systems. 

Linear algebra serves as a fundamental analytical tool for various 
systems that are increasingly being embedded with intelligence—
such as engineering (e.g., analysing the dynamics of flow in a 
network of pipes), economics (e.g., understanding price, supply, 
and demand dynamics), science (e.g., weather forecasting), and 
consumer products (e.g., managing the toothpaste portfolio of a 
large consumer company).

Linear algebra allows us to model, comprehend, and manipulate 
systems of equations involving numerous dimensions or variables. 
For instance, face recognition software heavily relies on linear 
algebra. It organises facial feature data into massive ‘pixel-by-pixel’ 
matrices, where each pixel represents a specific feature of the face 
relative to a standard. Linear algebra helps with data processing 
(compressing the data without loss of integrity), analysis (through 
matrix operations), and manipulation (training models and 
extracting features, again using matrices).

The reassuring bit
It is encouraging to realise that linear algebra is part of school-level 
mathematics. There is no reason why anyone should struggle with 
mastering it, except due to the quality of mathematics education 
at the school level and a lack of rigour in the faith and belief of the 
educators in ensuring all students succeed.

In contrast, the application of mathematics in physics 
demonstrates a relatively stronger command over mathematical 
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principles. While calculus computations might not be suitable for 
everyone, Linear Algebra, in comparison, is accessible to all—it is 
much mechanical, and simpler; though computational calculus is 
also overwhelmingly algebraic and trigonometric. Even theoretical 
physicists tend to favour more familiar and 'simpler' mathematics. 
For instance, consider the Heisenberg uncertainty principle and the 
Schrödinger wave equation, both independent theories in atomic 
physics. They share a similarity in asserting that a more precise 
determination of an atomic particle's position would compromise 
the certainty of its momentum. Essentially, their mathematical 
formulations are alike. However, Schrödinger's equation gained 
more popularity as it relied on more familiar differential equations.

Overall, the rise of simpler mathematics is helping to accelerate 
the mathematisation of humankind. The central role of linear algebra 
in Big Data applications is a clear sign of the massive expansion 
in the appreciation of mathematical ideas and objects, leading to 
a more precise understanding of science, technology, engineering, 
and research.

The increasing use of ‘simpler mathematics’ is like a backdoor 
entry of mathematics into our lives—it’s subtly permeating 
everything we do!

The increasing applications of ‘simpler mathematics’ is like a 
backdoor entry of mathematics in our lives—it is subtly permeating 
everything we do!

Linear algebra and its applications  
Linear equations are notably effective in approximating real-
world situations. One intriguing scenario involves quantities that 
require multiple dimensions or variables for complete definition 
or understanding. The simplest among these are quantities known 
as vectors—they possess one dimension as magnitude, akin to 
scalar quantities, while the other dimension denotes their direction 
of change. For instance, speed is a quantity defined by a single 
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dimension known as magnitude. However, when considering speed 
along with another dimension—direction—it becomes velocity. 
Thus, velocity represents a vector quantity with two dimensions: 
magnitude and direction.

In linear algebra, vectors hold a fundamental position, playing a 
central role in various key concepts and techniques. Using vectors 
in linear algebra offers a significant advantage—they provide 
a robust and adaptable method to represent and manipulate 
complex quantities. Vectors can undergo addition, subtraction, 
scaling, and various transformations, which can be combined to 
create more sophisticated operations and structures. Consider an 
airplane landing, a scenario influenced by several vectors: wind, 
drag, wing and tail positions, along with Air Traffic Control (ATC) 
instructions guiding pilots on a specific heading (direction) for a 
set distance (magnitude).

A matrix, much like a vector, comprises a collection of numbers, 
while linear transformations encompass the set of all functions 
(functions that take vectors as inputs).

In linear algebra, matrices serve to represent linear transformations 
and are expressed through matrix multiplication. For instance, the 
rotation of a 2D image on a computer screen exemplifies a linear 
transformation, which can be represented by matrix multiplication.

Linear algebra holds significant connections to various areas of 
mathematics, notably including probability, calculus, and statistics, 
because it provides an efficient means to represent and manipulate 
data. Its role in statistics and probability theory is particularly crucial.

In statistics, data is frequently organized in matrices or vectors, 
where each row signifies an observation or data point, and each 
column denotes a variable or feature. Operations in linear algebra, 
such as matrix multiplication, are instrumental in conducting 
computations on these data structures.

In probability, regression analysis is a statistical technique used 
to model the relationships between variables. Linear regression 
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assumes a linear relationship between the dependent variable and 
one or more independent variables. The coefficients in a linear 
regression model can be estimated using techniques such as 
ordinary least squares (OLS), which involves solving a system of 
linear equations—a core concept within linear algebra.

In calculus, linear algebra is used to study the functions of multiple 
variables and their derivatives; linear algebra facilitates the solution 
of linear systems of differential equations.  

Linear algebra can also be used to study optimization problems, 
which involve finding the maximum or minimum value of a 
function subject to certain constraints.

It may be encouraging to realize that linear algebra is part of 
school-level mathematics. There is no reason for anyone to struggle 
with mastering linear algebra, except due to the quality of school-
level mathematics education and a lack of rigour in the faith and 
belief of the educators in ensuring all students succeed.

In contrast, the application of mathematics in physics 
demonstrates a relatively stronger command over mathematical 
principles. While calculus computations might not be suitable for 
everyone, Linear Algebra, in comparison, is accessible to all—it's 
simpler. Even theoretical physicists tend to favor more familiar 
and 'simpler' mathematics. For instance, consider the Heisenberg 
uncertainty principle and the Schrödinger wave equation, both 
independent theories in atomic physics. They share a similarity in 
asserting that a more precise determination of an atomic particle's 
position would compromise the certainty of its momentum. 
Essentially, their mathematical formulations are alike. However, 
Schrödinger's equation gained more popularity as it relied on more 
familiar differential equations.

On the whole, the central position of simpler mathematics would 
spur the faster and wider mathematisation of humankind.
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Mathematising mathematics – The pearly gates of education 
This extensive topic is reserved for a later chapter in the book. The 
'technology of education' stands as humanity's blind spot, revealing 
our struggle to comprehend the means to nurture an infant toward 
reaching even 'half of their human potential.' Unfortunately, it 
seems to reflect a race to the bottom, as exemplified when a U.S. 
president famously urged teachers to compete against Indian 
children in mathematics, despite the puzzling dilution observed in 
mathematics education in India. 

We have misconceived education to the extent that Edtech is 
now hailed as 'Technology in education;' expanding technology's 
presence in a domain that is fundamentally social. Education relies 
on role model adults, peer interactions, conversations, observations, 
experiences, and the development of habits of both body and mind, 
such as reading and writing.

Furthermore, the intensifying institutionalisation of 'educating 
children' might be humanity's most significant misstep in the past 
200 years. The advent of the Fourth Industrial Revolution (4IR) will 
inadvertently lead to the de-formalisation of education, returning 
it to the domain of parental guidance, family influence, and the 
broader societal community 'the village'. 

The growing public apprehension towards AI, urging for 
regulation to 'combat it,' actually signifies our collective failure 
to grasp the core of education. It is high time we equip people to 
align with AI, prompting a redesign and revolution in education. 
To cut through the complex context, the educational revolution 
hinges on the lack of a just any one domain of knowledge, skill, 
value, or attitude that every school can effectively instill in all its 
children, without exception. Currently, we are attempting numerous 
initiatives, all falling significantly short of the mark!

There exists only one such domain – mathematics! Unfortunately, 
K-12 education shows the poorest possible record of achievement 
in mathematics. K-12 has yet to de-arithmetise mathematics, and 
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view  it as the language of the gods and the universe, the language 
intertwined with everyday life. The philosophical foundation 
supporting mathematics as a natural-like language dates back several 
centuries. David Sepkoski, from the University of Illinois at Urbana-
Champaign, in his research on seventeenth-century mathematical 
philosophy, suggests that 'the epistemology of mathematisation is 
fundamentally linked to the epistemology of language.' Epistemology 
refers to the 'philosophical theory of human knowledge.' For instance, 
the previously mentioned 'epistemology of language' could be 
interpreted as how we acquire and master a language. 

Mathematising mathematics is non-abstracting mathematics. 
K-12 reassertion will start with mathematised mathematics.

Without further ado, let us just say that humankind is 
mathematising as K-12 remakes itself.

Regulating AI – A lame debate without ‘making men’ 
Regulating the AI industry is an ongoing, contentious battle. 
Surprisingly, some industry leaders advocate for seeking regulation 
while simultaneously advancing their vision for AI platforms and 
products. It is premature to firmly adopt a position on regulation or 
delve deeper into its evaluation at this stage. 

The crucial and fundamental issue concerning the progression 
or containment of AI is the current and future nature and level 
of organic intelligence. The interaction and relationship between 
humans and AI depend on the master's capability and how we strive 
to surpass and maintain superiority over AI—continuously growing 
to maintain our mastery. Human capabilities are boundless, and 
our only limits lie in how we educate ourselves, determining our 
individual and collective virtues and potential. 

There is little debate when it comes to advancing the 
mathematisation of humankind, regardless of how or when 
we regulate the AI industry. Mathematisation also involves 
rejuvenating society by empowering its basic units—individuals 
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and families. Society represents the unseen force and structure in 
our lives. It revolves around instilling the concept and guarantee 
of social welfare, allowing genuine democratic control over our 
shared destiny. 

We must realise that debate on AI regulation lacks foundation, 
and is without considering how humanity will progress in the 
future. In fact, AI itself plays a crucial role in facilitating the ability 
of humankind to retain best control over AI. 

Furthermore, without striving to ensure the mathematisation 
of the entire human race, the debate about regulation falls into the 
hands of a fraction of us who may have a better understanding of AI 
but cannot genuinely represent the best interests of all of us, or the 
potential collective advancements in the realm of AI. 

It all comes down to 'what it means to be human', 'what defines 
our humanity', and how mathematics serves as the fundamental 
stepping stone to understanding 'what makes us human'. As a 
corollary, it raises questions about 'the essence of education', 'the 
connection between the education system and our humanity', and 
'the role of mathematics in education'. 
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Being Human 

Section II

Being human has never been more debated than the current times. 
Maybe, this is a reflection of the marginalisation of society in our 
lives, we seem to be losing that society is a biological need, not a 
‘desirable, ideal need, or creation.’ It has led to the loss of cultural 
life-force in our identity. The dramatic loss of faith and presence of 
the ‘(western) liberal democracy’ also brings us to question if long-
cherished human values are really to die for.

Fortunately, help is at hand to investigate the state of human 
ideal. Horace Mann, a leading founder of the K-12 system, 
famously declared, “A human being is not attaining his full heights 
until he is educated.” Indeed, it all boils down to how we educate 
newborns to adulthood.

Emmylou Harris, regarded as musician’s musician and a political 
activist, says it all about education in asserting that “Animals have 
a much better attitude to life and death than we do. …”  No animal, 
except for humans, needs to be educated to be what they are expected 
to be (as an adult). We are only as human as our education.
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Born to live king-size 
All living beings are born truly themselves, there is little to be 
discovered, learned, or thought about. A pup is born to be a dog, 
it simply increases in size as it matures. A calf will grow to be 
an elephant, no matter what. Their environment has little to do 
with their being, their innate nature. They may be ‘beaten’ into 
submission/conditioning or lured into one (such as Pavlov’s dogs) 
but it does not change their reality one bit. 

We cannot even change the character of single-celled (bacteria, 
and more), or part-celled acellular (virus) entities; except for 
changing the very nuclear material, but in that case what we have is 
a new living being (new genetic makeup is new kind of living being, 
by definition). However, this truth may be the biggest celebration of 
what living is, how life is in complete contrast to being ‘dead’, and 
why we have not been able to create life as yet! That plants grow 
as the seeds dictate is also well known, the secret of every plant is 
hardcoded in the seeds.

The best sameness is apparently boring! Diversity is the true king.

Zero is hero
No wonder there is all the similarity between animals (and plants) of 
the same kind/species; we all can narrate several universal features 
of all dogs, all whales, all sparrows, all lions, etc. 

Are we, humans, an exception to all this? Yes, no two of us are 
(apparently) alike, in the present, as well as longitudinally – the 
remotest past and the forever future. Why are we so exceptionally 

Celebrating life is a right
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unique? The answer to this quest is even more extraordinary – we 
are all born ‘zero’, a clean slate, there is very little human about us at 
birth (except physiology, of course)! This tabula rasa is the secret of 
unbounded human plasticity and (thriving) population.    

Diversity cannot feed on unlearning, but learning. 

Twenty-first century heroes that children are
The yet inexplicable ‘spark that is life’ is most sharply visible in the 
survival instinct. It is so hard to die, every life is a spring of ‘life 
force’; dead plants sprouting out shoots are quite a common sight. 
Obviously, human infants must have such force in most abundance, 
and it is.

Every human infant is born ready to learn! Ready to interact 
with her environment, all set to make more sense of the world. 
The ability to learn, and think (not reflex) is a natural corollary 
of the ‘nullhuman’ that every infant is. It is as easy to raise a child 
to be a Christian as a Hindu, a Dane as a Malay, a musician as a 
mathematician, and all else.

To top it all, it is as if the endless universe has conspired to ensure 
a unique phase of growth for humans – childhood, which ensures 
the best learning capability to every infant by being devoted to the 
development of the brain with the body getting secondary attention. 

Infants know how to learn, we do not need to teach them that 
(even if learning can be taught); for instance, can we really teach 
children how to start walking! 

Last but not least, the near ‘universal institutionalisation of 
raising children’ (K-12 to University now ‘educate’ our children as 
the primary and sole social institution) first kills the innate ability 
to learn, and in the best institutions we try to ‘teach how to learn’ – 
a complete contradiction in terms. We will further explore these 
themes later in the paper.

The knowledge era, the AI-age heralds the best time to be human. 
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Humans have to be raised to be so
Of course, we know this for eternity – it takes a whole village, to 
raise every child in the village. Raising a human is intensely, and 
organically social, and ‘local’. For, our existence is comprehensively 
(and biologically) rooted in our being a part of a society. Our most 
important identity, especially in the formative years, comes from 
the values, morals, and resources we are immersed in, it is our Social 
DNA – our real existential DNA.

And then there is family for every one of us. The ‘clean slate’ 
newborn, physical limitations of children, infinite things to learn, 
and the critical showcasing of the space to be self within a society 
imply years of ‘nesting’ for every newborn. Raising children in a 
social unit family is among the most creative human innovations, 
and also the most amazing gift for humans (to be role models to 
their children if no one else). 

Down the lanes of history, societies also created special 
institutions – schools, colleges, universities, and many more of the 
kind – for raising children to fuller human potential and to even out 
the family differences in some socially important matters.

The nesting period for human children is about two decades; the 
time it takes to lay the necessary foundations to raise a human out 
of a newborn. 

It should not be disheartening to realise that no one can be raised 
to be a full-human (the similar, ‘vertical’ development), it is as yet 
undefined, and we all know umpteen examples of the infiniteness 
of human ability along specific human dimensions. Yet, implicit 
in the aforementioned is the unfathomable ‘lateral development’ 
possibilities, i.e., in the way we all could be unique, and serve self 
and humanity in enriching ways. There is so much to be human, 
and for that matter being 8 billion should be a blessing for humanity 
IF we all are unique if we have been truly educated over the two 
decades to adulthood. 
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Education is the ONLY business of societies. Education is the 
technology of humanization.

Education is the name, game
This peerlessly human, two-decade-long process and content of 
raising children is what we call education. 

Infant + Education = A cultured adult; to be right, culture also 
subsumes sci-tech 

Jumping the gun, one of society’s gravest self-inflicted hurt 
and one that explains all of the banes as well as boons is the near 
institutionalisation of education. Empowering academic (social) 
institutions —  K-12 to University, examination and curriculum 
boards —  and creating national ministries of education to define, 
standardise, assess and evaluate the education of every child is just 
wrong, untenable, anti-human, and anti-society. Unfortunately, this 
trend is only accelerating, and may already be viciously spiralling, and 
creating sub-humans (or unhumans, or humans with very narrow 
capabilities) at a mass scale even in the so-called best institutions. 8 
billion of us may overwhelmingly be far fewer humans.

Education is entirely social, including the development of scientific 
temper. It must be rooted in relevant ‘nature’, the same nature we 
draw scientific principles from and therefrom technologies. 

Family, community and society must be the natural (primary) 
educational space, and academic institutions must be shown their 
place as complementary and completely secondary. To be true, for 
once we need to be drastic about not associating with the phrases 
such as ‘school education’, college education’, etc. Only purely 
social institutions should be acknowledged and encouraged as 
educational institutions.

In the increasingly sci-tech times, academic education is 
important to best understand the imperatives and opportunities 
open to societies. But it must be mediated, to some significant 
extent, through the adults in children’s lives in family and society at 
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large. A humanity where the best of the formally qualified parents 
cannot support even Grade III academic transactions is a wronged 
humanity and misplaced academic institutions. All academic 
education must be real, rooted in nature and population.

De-institutionalise education, educate parents, catalyse evolutionary 
revolution.  

Rationality and Morality – the essence of education 
Rational thinking and moral behaviour are the two universal 
characteristics of humans. Rationality is our biological DNA 
while moral behaviour is the expression of our social DNA.  
Rationality and morality together best describe our effective 
identity and actions.

Most simply, education is about honing rationality, and imbuing 
morality (ideally, rationally). On another plane, ‘rationally presented 
morality’ is a great tool at the hands of a society to steadily reinvent 
itself, and minimise the natural inter-generational dysfunctions.

The best educated are highly rational and moral.

Mathematics – Music to the ears of humanists  
To be fair, between rationality and morality, rationality is 
more universal human character in the sense of its educational 
imperatives – it may be presented and processed in quite similar 
ways humanity-wide. 

Retaining and sharpening rational thinking rigour and routines 
shall have an epoch-making positive impact on humanity as a 
whole. Developing, sustaining, and refining an educational system 
that leaves no one behind in harnessing the best of rational thinking 
is the biggest human innovation and the only solution for strongly 
emerging out of the current quagmire. 

Obviously, it would be ideal if the rationality-focused education 
that guarantees equal outcomes for all children across the world 
supports the foundations of moral development too.     
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Mathematics education is comprehensively rational and 
independent of socio-economic, political, and technological 
divides. It has elements that could also rationalise the substrate for 
moral behaviour.  

The role of mathematics in humanizing all children, and in due 
course, the entire humanity, is unprecedentedly revolutionary. It has 
never been visited for this potential ever before. In fact, the current 
math education has alienated and dubbed almost all humanity 
‘weak in mathematics’. Mathematics is the only aspect of our lives 
where we see no cringe in letting the world know how poor we are 
in mathematics. 
However, all this is only due to ‘school mathematics’ not being 
mathematics at all! Human children cannot ever be struggling in 
‘cent percent mathematics, the real mathematics’. 

Mathematics is the ONLY fuel to power 8 billion rational and 
moral us. 

Cent Percent Mathematics – mathematics humanity lost out
‘Cent Percent Mathematics’, the real mathematics is a sense, much 
like the ‘common sense’, and the ‘intuitive sense’, an innate ability that 
cannot be taught, but is personally sharpened through experience, 
application, and articulation. Real mathematical sense grows with 
every problem or question solved (unlike the thoughtless ‘practice’ 
in what is called mathematics in schools). In fact, the other senses – 
the five – also grow through personal attention to them, for example, 
it is music that refines the hearing sense, the music we play or sing! 
Real mathematics is transacted like a language – we Read, Write, 
Speak, (and Listen) it.

The rational nature of mathematics is uncontested, though little 
internalised, and we start with a glimpse of the moral foundations 
and outcomes of mathematical constructs.

Real mathematics is the simplest language conceivable. More on 
this next.
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Mathematics and humanisation
Google search ‘Math helps in humanization?’ and the response one 
gets is ‘Humanising math classes’, ‘On humanization of mathematics’, 
including ‘Did you mean: math helps in immunization’! This 
explains it all. Competent mathematical thinking and skills 
have never been seen as a universal human quality. Success in 
mathematics education is not a compulsory, non-negotiable 
educational goal. Thus, the only acknowledged challenge in 
mathematics education is ‘humanising’ it - humanising the 
disability in learning mathematics by systematically normalising 
poor achievement (such as lowering the standard of mathematics 
curricula, syllabi, assessments, evaluation, and policies), and 
reducing the shaming and supplementary education that almost 
always starts with mathematics. 

No less, the role of mathematics in nurturing a fuller human is 
still an outlier interest in any kind of research. There seems to be 
no conviction in any domain of knowledge and practice, including 
philosophy, that mathematical thinking is a human imperative. 
Unfortunately, mathematics education has never been about 
humankind, about us all, even though since recorded history 
mathematical objects, thinking, and skills (geometrical, to be 
sure) have been the only thread connecting the entire humanity, 
besides the DNA material. That is the very nature of mathematics, 
being the language that captures the ways of our world (natural as 
well as man-made technologies), and the universe. Sunil Singh, a 
devout mathematics story teller and author, is apt in saying that, 
'the humanness of mathematics has been almost surgically excised, 
leaving only a body of work to be picked over, rummaged through, 
and artificially assembled without coherence and historical context.' 

Today, mathematics education holds the key to how humanity 
will end up by the end of the century. 

For, to date, we have no alternative to educating infants to be 
human (cultured, dignified) adults. 
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Mathematised Mathematics 
Auto-mathematisation of humankind

De-arithmetisation, de-rigourisation, and de-formalisation is 
mathematisation, by default. Mathematisation is the promotion of 
intuition, visualisation and verbalisation in mathematics education. 
‘Reading mathematical texts’, as opposed to ‘doing’ mathematical 
solutions, is an act of mathematisation. The abstraction of 
mathematics education dramatically increases the focus on 
arithmetical formulations. It must be known that abstraction is one 
key reason mathematics has such wide applications; ‘2 + 3 = 5’ is an 
abstract mathematical expression, it may imply ‘2 cells + 3 cells = 5 
cells’, and  ‘2 planets + 3 planets = 5 planets.’  

However, placing mathematical expressions in real-world 
situations leads to real, non-abstract, mathematisation. For example, 
in everyday situations, we would encounter expressions such as 
‘2 dozen cells + 3 cells’, or ‘2 $100 bills + 3 $1 bills’ and for neither of 
the sum is ‘5’; ‘2 dozen cells + 3 cells = 27 cells’, and ‘2 $100 bills 
+ 3 $1 bills = $203’. The highly abstracted mathematics is not wrong, 
but it represents just a fraction of the quantities that mathematical 
expressions may represent.

Very importantly, ‘12 + 13 = 25’ is a memorised expression and 
it is only for those schooled and with memory of the sum, whereas 
‘12 ₹10 bills + 13 ₹20 bills = ₹380’ would be a universal response of 
all adults irrespective of their school education, or regular usage of 
mathematical computations. 

Recall, in the entire education system, all the way to the masters 
level, ‘word problems’ are considered to be tough questions to 
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understand, articulate mathematically, and solve to compute 
the desired quantities. In reality, ‘word problems’ (mathematics 
questions that are rooted in real-life situations) should be easier 
to solve correctly, than their corresponding abstracted problem. 
For instance, for a big majority of Grade V students, and many 

professionals, the abstracted expression ‘
1
2

 x + 5 = 100’ may not be 

such a straightforward expression to solve for the value of x, but one 
of its infinite non-abstracted equivalent expression would be solved 

easily by all adults. For example, finding the cost of a dozen oranges 

(or 1
2

 dozen oranges) if ‘Cost of 1
2

 dozen oranges + packaging cost 

(₹5) = ₹100’. 

Understanding, manipulating, and applying quantitative 
relationships in everyday life is almost natural to humans. 
Fortunately, Big Data is real-world data, a record of actual, or 
simulated events and conditions. Reading and analysing Big Data 
necessarily demands the best knowledge of the context, data values, 
and the goals of the analysis. Big Data analytics auto-mathematises 
quantities and their relationships.

Let us explore an example of how the real context of data matters 
in any data analysis. Sheer application of arithmetical formulas may 
just be less than meaningful. The example is around the measures 
of the central tendency of data, especially mean and median values. 
It is a simple situation of how the choice and application of the two 
measures cannot be mechanical/abstract, the understanding of 
the nature of the data, and the purpose of computing the central 
measure are essential. The following example of population density 
(of a geographic region) is presented as a case study.

Should we compute the average population density or the median 
population density? 

It all depends on the best understanding of the nature of data and 
the purpose of seeking the central tendency.
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Commonly, average population density is a mean, that is, the 
sum of population densities of various regions/number of regions.  
However, to be mathematically sound, it should be known that 
density is in itself a ratio, not a mean value, and just the way a ratio 
is conceptually closer to division, density is computed using the 
division operation.

Pertinently, this computation of population density works well 
for small areas where there is no significant variation in density, 
but it often shows somewhat inexplicable scenarios for larger areas, 
where there are clear population variations, like downtown, suburbs, 
exurbs, and industrial areas. Thus, the average population density is 
hardly the experienced density for people who live in that region.

In such varied geographical areas, a more realistic measure of the 
population density would be the median value of the mean density 
of smaller or homogenous locations across the larger area. 

The median value of the density is one which is more than 
the density experienced in 50% of the localities (not people) in 
the region, and less than the density experienced in the rest of 
the localities.

For example, consider the following data of the mean population 
densities of the five zones of a metropolitan city (in persons per 
square kilometre): 

100, 200, 300, 400, 5000
The mean or the average population density of these zonal 

densities is 1200 persons per square kilometre. It is way higher 
than the density values of the first four zones because it is 
influenced by the extremely high value of 5000 (most likely in 
the downtown area). 

On the other hand, the median population density is 300 persons 
per square kilometre, and it is apparently a better measure of the 
density across the zones and is the density that will be experienced 
in four out of the five zones.
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Be real
Mathematics is NOT an arithmetical method, devoid of all logic! 

Mathematics has been abstracted to make it widely applicable, and 
that does power math to become an eminent domain of knowledge. 
But it does not mean that we should teach math this way, i.e., 
abstractly where ‘7 – 3’ is always 4! It is not. School math education 
makes math abstract a little too early, profoundly changing the 
very idea of math to children in a generation and adults in the next 
generation. Mathematics has been made out to be what it is not!

Five dimensions of math
The simplicity of the ‘definition of math’ in the Draft (Indian) 
National Education Policy, 2019 is worth a reference. It defines 
mathematics as composed of the following five dimensions. To be 
particular, the elaborations are our own. 

1.	 Counting (and measurement) The means and rules of 
quantification of things to generate numbers (the starting point 
of anything mathematical); for example, the whole idea and 
practice of counting number names, decimal number system, 
and fractions.

2.	 Arithmetic    The basic rules for using and manipulating numbers. 
The idea and applications of the four fundamental operations 

on numbers; for example, how the quotient 4 in 
12
3

differs from 

quotient 4 in 
16
4

.  

3.	 Mathematics  The language-like ability to think and express 
all quantifiable situations using numbers and arithmetic. For 
example, ‘mathematics’ distinguishes between ‘8 – 1 – 1’, and ‘8 – 
2’ (there are significant differences between the two expressions)

4.	 Reasoning   Math is uniquely logical and rigidly hierarchical. 
Anything mathematically expressed just needs to follow one 
other statement – the previous mathematical statement/
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step. Unlike science, math is endlessly and purely logical. 
One can complete several PhDs in math with just papers 
and pens to write! For example, deductive reasoning is 
mathematically valid, while inductive reasoning is not. 
Science is observation, experience, experiments, and logic – 
all founded on what is real.

5.	 Problem solving   The ability to harness the vast set of tools and 
resources in the domain of mathematics to define and solve any 
given real-world, scientific, or any research situation/event. For 
example, conceptualising a surface that has the maximum area 
for the given perimeter.

COUNTING ARITHMETIC MATHEMATICS REASONING PROBLEM SOLVING

MATHEMATICS

Hope you did register that one of the dimensions of mathematics is 
named “mathematics”. This just emphasises the core of mathematics – 
mathematical thinking. Not just number crunching!

Arithmetic of mathematics
This ‘5-dimensional view’ of mathematics has some profound 
implications for teaching and learning math:

What we learn in the math period in schools is just one category 
of knowledge out of the five – arithmetic – and that too in a very 
limited manner: using specific methods without logic, and without 
the freedom to use different methods to solve the same problem 
(severely limited number of methods is also a challenge). It would 
not be too misplaced to say that math education in schools does not 
represent what math really is!

No wonder, the overwhelming majority of children in school 
struggle in math – their innate power of reasoning and language 
is crippled by the inappropriate school math content and emphasis 
on teaching rigid, limited arithmetic. For example, no reason is 
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assigned to why ‘10 is written as 10’, why ‘2 divided by 
1
2  is 4’, or 

how exactly ‘125 percent of 80 is 100’. The right math education will 
logically explain every such mathematical expression/step.

Till the end of the ‘whys’
It is heartbreaking to come to terms with the most undesirable 
impacts of math education – putting adults in poor light! After a few 
attempts at clarifying reason/logic, children realise the fruitlessness 
of seeking explanations from the adults around them – teachers, 
parents, elder siblings, and tutors. Everyone has studied math the 
same way – just rote methods-so no one can help a child get the 
answers to ‘why’ in math!

This tells us something unique about what math is. Math is the 
only subject that can take on endless ‘why’. The real value of math 
is in honing a habit of thinking that seeks why for everything, all 
the time, and till the end of the whys. This habit is valuable across 
‘subjects of life’. It is my personal experience, not a poetic expression 
that math sculpts thinking reflexes and regimen, which significantly 
enriches team play and leadership, solution-seeking focus, and 
sharp communication abilities.

‘School math’ is logicless, thus unduly challenging
School math is anything but mathematics! It’s not even arithmetic. 
School math is a creation of its own, invented only to be taught at 
school. Math learnt at school is of little use to those who find their 

ways to excel in math in school years (such as senselessly practising 

‘take 2 up to find the quotient of 8
1
2

 or 8 ÷ 1
2

’), and also for those 

who get scarred by school math.
There is no reason for math to be taught in schools the way it is. 

Worse, school math lets the vast majority of children be branded 
as ‘weak/slow learners’ in school years, a fact no nation, society, 
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community, or parent has dared to dispute and undo. Surprisingly, 
mathematicians have also failed to stand for our children and the 
fact that no child should be struggling in K–10 math (because math 
is based on logical thinking and needs no real-life resources/aids to 
be validated). School math is all comprehensively misplaced.

Here is another set of examples of the wrong that is ‘school math’

1.	 7 + 3 = (always) 10 according to school math! It is not so in 
everyday situations. For example, 
‘7 years + 3 months = 87 months = 7.25 years = 2645 days’ 
(assuming 365 days a year and all calendar months to be 30 
days); there is nothing ‘10’ about the sum of ‘7 years + 3 months’. 
School math discounts units of quantities – a cardinal mistake.

2.	 2 × 8 = 8 × 2 and 3 × 4 = 3 × 2 × 2. For example, for many 
practical purposes, 2 packets of 8 apples are not the same as 
8 packets of 2 apples. Math is a very precise language; physically, 
a × b is not the same as b × a. There is specific identification of 
multiplier and multiplicand (except when we use numbers as 
factors). A common manifestation of this indiscreetness is that 
we all do not know where to find ‘5 × 6’ in multiplication tables – 
table of 5 or of 6!

Exemplifying ‘school math’ and mathematics
The stark difference between ‘school math’ and ‘mathematics’ may 
be visually examined in the simplification of the expression 
6 × 2 ÷ 4 ÷ 3 × 5 – 5. We will simplify the expression in the ‘school 
math way’ and ‘mathematically’. We all know the school math way – 
comprehensively abstracted simplification with numerals. 

6 × 2 ÷ 4 ÷ 3 × 5 – 5

The school math way of simplification: 

6 × 2 = 12
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6 × 2
4

 = 12
4

 = 3

6 × 2
4
3

 = 33 = 1

6 × 2
4
3

 × 5 = 1 × 5 = 5

6 × 2
4
3

 × 5 – 5 = 5 – 5 = 0 

Mathematically, we will follow each step of the simplification in 
a non-abstracted way and visualise every step with quantities 
(numbers) rather than numerals. 

Let 1 = then 2 =

    I     II    III    IV    V   VI

6 × 2 =

I II III

6 × 2 ÷ 4 =

6 × 2 ÷ 4 need not be seen as                   

While 6 × 2 does represent 6 pairs, the pairing is not ‘boxed/rigid’ 
the way it is for the groups created out of division. Thus, 6 × 2 is still 
a collection of 12 things. Thus, 6 × 2 ÷ 4 is better represented as a 
collection of three groups of four roses.

6 × 2 ÷ 4 ÷ 3 = 

I
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6 × 2 ÷ 4 ÷ 3 is packet(s) of 3 groups of 4 roses in each packet. And 
there is only one such packet of 3 groups of 4 roses possible out of 
the given 3 groups of 4 roses. Pictorially, 6 × 2 ÷ 4 ÷ 3 is:

The divisor 3 in ‘6 × 2 ÷ 4 ÷ 3’ has to have the same unit as the 

dividend ‘6 × 2 ÷ 4’. The unit of the dividend is , and there 
are three of those in the dividend.

6 × 2 ÷ 4 ÷ 3 × 5 =

I

III

II

IV V

As the unit of subtrahend 5 in ‘6 × 2 ÷ 4 ÷ 3 × 5 – 5’ is not specified, 
it is assumed to be the same as that of the minuend, 
‘6 × 2 ÷ 4 ÷ 3 × 5’, hence minuend 5 is:

I

III

II

IV V
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6 × 2 ÷ 4 ÷ 3 × 5 – 5 
I

III

II

IV V

I

III

II

IV V

–

6 × 2 ÷ 4 ÷ 3 × 5 – 5 = 0

To sum up, the stark differences between the school way and the 
mathematical way as evident in the simplification of the given 
expression are listed as under:
1.	 3 in ‘6 × 2 ÷ 4 ÷ 3 × 5 – 5’ is ‘3 units’ (i.e., 3 ones) in the school 

way, and it’s ‘3 fours’ mathematically.
2.	 5 as the subtrahend in ‘6 × 2 ÷ 4 ÷ 3 × 5 – 5’ is 5 roses in the 

school way, and it’s ‘5 dozen roses’ mathematically.
Importantly, the school education system has not formally explained 
ANY of the hundreds of logical explanations missing in ‘math 
education’ in the past 200 years. Math has been taught only for 
encouraging number-crunching abilities, and it works only for a few.

School math, in its current form, must be reformed outright.
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‘Cent Percent Mathematics’
A language like no other

Significant laissez-faire abounds in mathematics education to 
this day. It has been a case of labour without an ideal, and goal; 
students are mostly faceless in K-12 but most so in mathematics. 
An interesting aspect of mathematics education is the extent of 
similarity in the pedagogical approach, planning and resources 
across nations; the level of abstraction is alarming and universal. 
Complete disregard for the socio-cultural contexts of the learners 
is common.  There is more, it has lived with opposite posturing of 
leading universities of the world, for instance, Cambridge University 
has an academic stance that is mathematised, but Oxford University 
plays that down (and this does not mean any less for either, just that 
both are feasible stances). 

K-12 mathematics education content and processes have 
undergone several reviews and reforms in various parts of the world 
yet student performance in mathematics continues to be dismal. 

Children and mathematics
Childhood, school years, and mathematics bear an unholy 
relationship. Extended childhood, i.e., biological childhood (up 
to around 7 years of age), juvenility, and adolescence are almost 
entirely spent in schools. Expectedly, the importance of the quality 
of school years cannot be over-emphasised – extended childhood 
years are important formative years. They shape most of who 
children become post-school and the rest of their lives.
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However, the biological gift of extended childhood being the best 
learnable years needs to be complemented by ensuring that every 
child is (truly) happy. Only a happy child can learn. Happiness for 
a child is most driven by a continued sense of 'free play', in more 
specific terms – control over the pace, and steps to the outcomes 
(adults also share this need). Getting appreciated for the outcomes 
is a way of feeling control (appreciation of others is central for 
children, far more as compared to adults). Happiness increases 
engagement in activities/tasks, and engagement is key to learning.

School math is a spoiler of happiness, and challenges due to 
school math starts in preschool itself for some children. In upper-
primary grades, the majority of the children are hit by anxiety due 
to math and by the time children reach middle school, fractions 
and algebra break the hearts of most children. 

Math is the most important reason why schools have ‘failed’ a 
big majority of all students in the past 200 years (eventually, even 
if not literally). However, mathematics is a meta-subject in the 
sense that success in math is socially rewarding in all cultures, 
and the unfair poor scholastic achievement in mathematics hurts 
self-esteem and optimistic worldview in the childhood, teens, and 
young adulthood years.

In many societies, definitely in all the Asian ones, getting 
math right is crucial, so a lot of play and free time are invested 
in supplementary math education. Most children can’t cope with 
this obsession with mathematics, especially when no adult in their 
lives – teachers, tutors, parents, siblings, others – can do one bit of 
help in getting a hold over mathematics. Worse, the overwhelming 
majority of children come to realise this stark order of life in their 
primary school years.  

This math-induced stress spills over to the general psyche and 
over time induces a lack of confidence and deteriorates performance 
and interest in other subjects. Sooner than later, childhood turns 
into a burden to be done away with as soon as possible. Indeed, 
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many Asian societies look at childhood as just a passing phase to 
adulthood and ignore the emotional well-being of the children.

The lack of poor application of child psychology in school 
education is writ large all around us, for example, the ‘happiness 
curriculum’ being deployed in schools run by the Government 
of the National Capital Territory of Delhi, focuses on ‘overall’ 
development at the cost of academic excellence, overemphasis on 
hands-on but minds-off ‘play-way’ methods. Being happy is a state 
of mind, a worldview of the state of things in life, not episodic 
‘happy experiences/events’; only happy adults around children 
make a (truly) happy child.

What makes math the easiest language to learn?
Math is much easier to learn than natural languages and the ‘genetic 
languages’ such as art, music, play, gestures, etc. Interestingly, there 
are quite a few reasons why math is much easier to learn (when 
analysed for school-level math).
1.	 There are just 10 digits (alphabets) in math (0–9).
2.	 Math is a far more compact language, e.g., the following 

sentence, in English language sentence – I had 8 apples and I 
gave one apple each to two friends – is mathematically  
8 apples – 1 apple – 1 apple, or 8 – 1 – 1.

3.	 The grammar (‘rules’) of math is limited. It includes the 4 
arithmetic operations, equations, vectors, etc., and these rules 
are also tightly linked together (thus, the volume of basic rules 
is even less).

4.	 There are a few exceptions and conventions in the grammar of 
math. An example of a convention is – the axes in a graph are 
drawn at 90˚ to each other, and the x-axis is horizontal, with 
numbers written from left to right.

5.	 Math’s grammar is universal (2 cats + 2 cats = 4 cats, for all of 
humanity) – math is the only universal language.
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6.	 It is much easier to continue to understand newer concepts in 
math. Concepts in math are linked in a rigid hierarchy – thus, 
every new concept is based on other definite concepts (that we 
can easily identify and specifically learn). For instance, if we 
comprehensively understand the addition of 1-digit numbers, 
we can add larger and/or multiple numbers.

7.	 Practising math can be a self-paced solitary activity that may 
not require the company of others (unlike when practising 
natural languages).

8.	 Math is much easier to explain to others. There are numerous 
alternate ways of demonstrating and visualising every concept 
(because math is as ‘real world’ as it can get).

It is easy to jumpstart a new journey of discovering math all over again! 
Math can easily be the second language at home, and that would 

change everything for us. 

Embracing a new language
The most important feature of natural languages is that they grow 
on you with daily usage; we keep acquiring new nouns, verbs, 
adjectives, adverbs, and phrases without any specific effort. And the 
languages we are acquainted with are not forgotten even when we 
do not converse in them for a long time. When we use mathematics 
as a language, the layers of mathematics that we know must grow 
as we deal with quantities in our regular day and it too would stay 
with us for a long term. 

On the contrary, unfortunately, math concepts fade away from 
our conscious memory sooner, even for the best educated ones. 
School math textbooks are responsible for the current state of math 
education on three grounds – educationally unsound partitioning 
of mathematical content strictly along grades, extreme teacher-
centricity (designed as a teaching aid, rather than a learning aid), 
and far removed from real-world contexts. New-genre textbooks 
are needed to be learner-centred (comprehensively useful for 
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independent learning), and free of distortions due to grade-caused 
syllabi, and abstraction.    

Briefly, mathematics as a language implies ‘reading’ a real-life 
situation as ‘3 trays of 4 cups each’, then writing it mathematically 
as ‘3 × 4 cups’.

Improving the content of thinking
One way to better contemplate any situation is to pour in more 
relevant and appropriate knowledge of the various dimensions of 
the situation. For example, while discussing the baking of a cake, 
the more we know about the physics and chemistry of grinding, 
refinement of flour, heat, blending, baking powder, water content, 
ratio of ingredients, etc., the better would be the outcomes of the 
baking process.

Clearly, this mode of better thinking requires extensive 
knowledge acquisition, sound foundations of as many domains of 
knowledge as possible, experimentation (an independent mode of 
knowledge acquisition), sharper and more vigilant observational 
skills, better command over the language of reading/academics, 
etc. It is a demanding way of training to think better.

Who doesn’t need to think better?
The world would have already been a wildly different place if 
200 years of the current school education system had gotten 
mathematics education to work for every student. 

A robust math education dramatically trains us to think better – 
think in a more reasoned, logical, ordered (systematic), and in a 
more confident way. Nothing trains us to naturally think about the 
‘why’ of everything as does good math education. Persistent and 
organically connected ‘whys’ have a distinguishing destination – 
right thinking (reasoning). It is only apt to quote Jordan S Ellenberg, 
a mathematician who is also a fiction and non-fiction author, ‘Math 
trained habits of thought … how not to be Wrong.’
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Improving process of thinking
The other way to think well is to hone a better way of thinking 
‘anything’, habits of mind as a default thinking cap. The science 
and practice of decision-making – a specific, goal-driven thinking 
process – are well-researched and documented. There are several 
very popular books on the subject, such as ‘Six Thinking Hats’. 
However, math catalyses a more rigorous ability to think, and just a 
good understanding of math is required to use it for better thinking.

Learning math automatically nurtures a positive experience by 
asking ‘why’ for everything. Math is purely logical, and almost 
everything is explainable in terms of universal reasoning (and some 
things which are not explainable are universally agreed conventions, 
for example, composing numbers from the right). 

A good education in math instils the natural habit of 
thinking, reasoning and seeking a deeper understanding of 
all numerically expressible situations. It helps us translate 
real-world situations/relationships/events into mathematical 
expressions (models) on paper!

Needless to say, school math strips math education of all shades 
of mathematical thinking. Mathematical thinking is not about 
arithmetic or algebraic equations, it is about training the mind to 
think more logically, reason better, and see patterns in the behaviours 
of numerically definable situations/events/relationships. 

Of the two – improving the content of thinking and improving 
the process of thinking – the latter takes far less effort to acquire, 
and it is a very generic ability. 

Mathematics is moral (too)
Morality and mathematics in this context are about the educational 
value of mathematical concepts and objects in consolidating 
certain moral values among children. A very interesting bit about 
mathematics is that for children the ‘repetitiveness and rigidity’ of 
mathematical thinking, and even the ‘methods’ are moralistic. 
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Young children have little understanding of the meaning and 
demands of moral behaviour. They tend to think of it as a series of 
rules for what is right and what is wrong, and in a fairly literal way. 
Mathematics may actually come across to them as the most ‘moral 
subject’ from this perspective.

Many foundational number, arithmetical, and algebraic 
concepts are quite coloured in moral stance, mitigating moral 
dilemma. Here is just a sample of a few concepts promoting moral 
worldview and outcomes.

Fraction may be mentioned as the first evidence of moral fibres 
in the otherwise rational roots of the concept which is based on 
the concept of exactly the same parts of given things. For instance, 
visualise a birthday party at home with a circular cake and 16 
friends. The cake would be evenly split into 16 pieces, and each 

person is expected to pick a piece each, taking exactly 1
16

 part of 

the cake. Thus, all get/take exactly equal sized slices of the cake.      

Rational numbers stand for legitimacy – an essential base for higher 
moral standing. It is a typical mathematical character to be upright, 
and proper. The acknowledgement and formalisation of improper 
fractions, together with proper fractions, as distinctive numbers is 
very instructive, and in the true mathematical sense teaches us to 
be inclusive. 

Irrational numbers remind us to live by the standards. Once rational 
numbers were accepted as a set  of numbers that represent our world 
for the most part, and central to most mathematical expressions 
and computations, other numbers were named to be the opposite, 
despite a world of infinite irrational numbers.    

Permutation reduces the chances of loss of face and at times may 
cause ethical conundrum. The mathematical formula for the 
number of permutations is magical, reality reduced to a number 
in the quickest time possible. Short of the formula, one would not 
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easily know if one has exhausted the possible distinct arrangements 
of the given set of objects. The risk of missing out on an important 
or critical arrangement could be embarrassing, for instance, the 
lack of cognizance of a certain order of precedence of dignitaries 
that is unacceptable could cause ethical challenges. Permutation 
comes in very handy in capturing and eliminating all possible 
moral discomfort.

Combination plays a similar role by offering the arrangements 
that portray equality of all participants, or target objects. The 
combination is a particularly helpful construct in avoiding 
moral lapses.

Algebra brings in the sense of transparency and truthfulness – 
two important moral strands at a societal level. Algebra rests on 
the public and precise quantification of relationships. Expressed 
as equalities, or inequalities algebra promotes appreciation of the 
connectedness of things.

Probability considerations and computations are morally 
influenced. Estimation is an integral part of the idea of probability. 
All estimates are also affected by the values and beliefs of the people 
involved, personal gains, losses, or social motives must be kept at 
bay in probability, qualitative as well as quantitative. Mathematics 
trains us to attain a higher moral state.    

Data analysis is now the bedrock of social sciences. Not only are 
statistical tools analysed for us as inputs, but these tools also act as 
ends in their own right. The world of Big Data has little in overlap 
with our current one – there is so much of data, new kinds and 
endlessly varied – that mathematics is the only reader and translator. 
Social researchers and commentators cannot confidentially critic 
without a mathematical sense.

More examples of mathematical concepts and thinking being a 
partner in our moral compass may not be necessary for the limited  
purposes of this book. 
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One essential goal of specifically listing how mathematical 
concepts carry moral import was to bring more spotlight on the 
connection between rational and moral. First, morally right could 
well be rational too. Second, morally wrong may also be rational, 
such as when self-interest prevails. Third, not rational may be moral, 
but it better be rationalised to the extent possible, for example, it is 
morally better to offer more share of food on the table to expectant 
mothers, but it would help if there is some rationality behind ‘how 
much’ more (and mathematics can help). Fourth, not rational and 
not moral is not about mathematics.   

Math is the fairest of all
Math is the best language to conceive, communicate and act fair. The 
best defence of fairness of an act, or decision, is by mathematically 
presenting the same, and this is ancient wisdom. For instance, in 
the fourth century BCE, in the set of (twelve) books, Laws, Plato 
talks about the construction plans and settlement of people in a 
new city, called Magnesia. 

Each household was to get an agricultural plot and a dwelling 
plot, in the most equitable way possible with the fairest distribution 
of the productive asset, the agricultural land. The dwelling units 
were to be of the same size and the households were supposed to be 
capped at the same number of members.

 The book proposed that the size of the agricultural plot must 
reflect the yield of the land; for example, bigger plots to be carved 
out for the less fertile land areas. Mathematics was to be at the 
heart of ensuring equity in income from agriculture. It is indeed 
surprising that the idea of fairness is evident to even two-year olds, 
and they understand it best when it is mathematically substantiated. 
For instance, a toddler easily understands that a smaller share of a 
sweet for her is fairer because she has a smaller tummy compared 
to the older sibling.
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Math is the most convenient language
‘Laws’ also mention Magnesia’s number of households to remain 
frozen at 5,040. Plato defends the choice of 5,040 by stressing that 
it is a very ‘convenient quantity’ – for instance, 5,040 houses, or 
agricultural plots, could be homogenously grouped together in 
many ways. 5,040 has over 50 divisors! And that means the houses 
and agricultural plots can be blocked together, at multiple levels, in 
ways far more than one can imagine, or needs to.

Let us say, all of the 5,040 houses could be organised into 6 
houses on each street, 5 streets to make one sector, 7 sectors to 
make one colony, 12 colonies to make on administrative unit, and 
thus, the 5,040 houses to be split into 2 administrative units. Many 
such alternative spatial planning is possible with the easily divisible 
number 5,040.

Math sense is common sense – living, earthy, personal
Common sense is the body of knowledge that we all have simply 
pushed out of everyday life and activities. It is largely created out of 
our private inferences, observations, explanations, and visualisation 
of our world. It is what makes the navigation of everyday living 
fast, efficient, and effective at the personal level. It also helps us be 
unaffected, in both good and bad ways. Interestingly, it is not a well-
organised body of knowledge. Empirical testing is not possible for 
what is commonsensical, it is unexamined. 

A really happy aspect of common sense is that it is always 
there in all of us, consciously and subconsciously, and in unique 
configurations. Math sense is a part of the common sense we all live 
with. The foundational ideas/concepts of math are commonsensical, 
they are all innately present and continually developing as we go 
through the routine of life and work. 

Moreover, the bulk of K-12 math is essentially foundational 
along the different ‘branches’ of math. It is indeed humbling and 
invigorating to realise how the appreciation, understanding, 
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application and ‘mathematical modelling/expression’ of all ‘branches’ 
of math, such as numbers system, arithmetic, algebra, statistics, 
geometry, calculus, etc. may be the most common denominator 
across humanity, the most typical characteristic of all humans. Of 
course, this is expected because rationality, or reasoning is the most 
universal of human traits. 

Pure logic; rigidly hierarchical reasoning typifies math. 
Understanding the basics of math, in all its multifaceted expanse, 
just needs the ‘presence of mind’, a thinking person. Let us explore 
some examples of how mathematical sense is quite commonplace. 
Educationally, it implies that there is nothing to teach/introduce in 
the basics of math.

We all commonly organise a wad of different denominations'  
notes by the likeness of the notes, all the notes of a denomination 
are stacked consecutively, together. Organised notes make it easier, 
error-free, and quicker when making payments, or computing the 
total value of the cash in the wad. 

This is an expression of the fact that we all know perhaps the 
most important mathematical foundation – numbers/quantities are 
made of different packets of quantities. For example, 345 is 3 packets 
of 100s, 4 packets of 10s, and 5 packets of 1s, just as ₹345 will be 
arranged as the 3 hundred notes together, 4 ten notes together, and 
5 one notes together (assuming all possible sets of 10 notes of ten 
are exchanged to 1 hundred, and all possible sets of 10 notes of one 
are exchanged to 1 ten).

Another profound foundation of math is children learn addition, for 
example, how ‘3 + 5 = 8’. No one has to know addition to tell how so, 
they simply visualise 3 things and 5 (similar) things and find the total 
count of it to be 8 things. Indeed, the only way to know the sum of ‘3 
+ 5’ is to count the final quantity, and we all know that; school math 
takes the abstract route of memorising, methodising ‘3 + 5’. 
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The idea of operations is in us already. Let us evaluate if obtaining 

the quantity represented by 8 1
2

 is intuitive and that the idea of 

division does not require any teaching/inputs. There is no special 
(mathematical) knowledge needed to find the quantity of half apples 
in eight full apples (except of course the number system being used 
to express the quantity). It is visualisable by one and all that there be  
sixteen half apples would be obtained from  eight apples; it is as easy 
as imagining each of the eight apples being cut into half and that 
count of half apples being sixteen. Pictorially,

8 apples

16 half apples

Half apples in 8 apples

The idea of the operation is so sharp in us all that the difference 
between 2 × 5, and 5 × 2 is almost missing in school, globally (both 
are taken to be just 10, totally similar mathematical statements). 
However, ask anyone if the following two situations are similar, and 
the resounding response will be ‘No’. The following pictures make 
it evident:

                    
2 sets of 5 erasers (2 × 5)     
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5 sets of 2 erasers (5 × 2) 
2 × 5 and 5 × 2 represent two different realities

Similarly, it is commonsensical to know the price of 2 kg of potatoes 
if the price of 1 kg is ₹50. Ask anyone the price of 1 kg of apples, 

if ₹110 was paid for 1
2

 kg of apples and the carry bag (at ₹10 per 

piece). Expect the correct response from all. And it is not easy for 
many to solve the algebraic expression representing the situation: 

Find the value of x in ‘ 1
2

  x + 10 = 110’, if x is the price of 1 kg of apples! 

The idea of algebra is universal!  The price of 16 kg of potatoes, 

when the price of 1 kg is known, becomes difficult to obtain, but that 
is only because of computational challenges, not the idea behind the 
computation. And there is more – everyone ‘sees’ the math in the 

aforementioned example as they solve ‘ 1
2

x + 10 = 110’, as under: 

In most minds, the first step in ‘solving’ the above is to ‘isolate’ 
the apples by removing the carry bag, and reducing the carry bag 
price from the total price (subtract 10 from both sides. The right 
way to see the operation, not to see it as taking the 10 to the other 
side and subtracting it from 110 as school math commonly teaches). 

Then the price of  1
2

kg becomes the same as the price paid, i.e., 1
2kg = ₹100.

The challenging idea of percentage is commonsensical too. The 
percentage is a relationship of quantities, it defines a relationship in 
terms of 100, for example, if for every 100, the relevant quantity is 
50 then we call such  a relationship as 50 per cent. Then, for every 
1000 we would have 500 (500 is 50 per cent of 1000). 
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Commonsensically, all of us know that if for every 1 we have 2, 

then for 50 we have 100; if for every 1 we get 
1
2

 then for every 100, 
we get 50. 

80% of 200 = 80 ×  
200
100

 = 160

All the basic idea of geometry is innate, the idea of space is a basic 
intelligence. Everyone understands the area as the amount of 
surface, people know more paint is needed for a bigger wall; the idea 
of perimeter is nothing new, people know that the cost of fencing a 
space is related to its length and breadth; seeing a volume as a sum 
of sub-volumes is natural, and so on. Ironically, ‘something’ goes 
very wrong in school math that area and perimeter questions are 
mostly wrongly computed by children. 

The idea of pictorial representation of quantities is nothing 
new to anyone, ‘graphs and charts’ are commonsensical. It is the 
knowledge and importance of 2 and 3-dimensional coordinate 
points that are not lost on anyone. For example, people think before 
they place a source of light in a room to best light up a room; people 
can read and make sense of maps without any real training. The idea 
of pictographs is as natural as differentiating between the quantities 
of two heaps of the same things. 

The fundamental idea of average (of data), and the appreciation 
of different kinds of averages is surprisingly common. People know 
what they mean and communicate when they say that members of 
a particular family are tall, they do not imply that all members are 
similarly tall, it is more to mean most of the family members are 
tall; when talking about the popular colours of tops/shirts, people 
actually use the idea of mode to declare that, and similarly, when 
people talk of the likely duration of travel to reach a place, they 
actually share the modal travel time (the most common travel time 
in the past).
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It may not surprise now that the idea of probability is also 
widespread. It does not need any example to substantiate. However, 
for the record here it may be recalled that we all meaningfully 
talk of the likelihood of specific events happening or not, and 
those decisions do involve computations similar to the way we 
mathematically compute probability, e.g., when predicting rains 
following windy and cloudy conditions we actually ‘quantity’ how 
many times it rained in such conditions, and when all it did not. 

The essential ideas of calculus are also for all to see. We see three 
ideas, among a few more, to be central to appreciating calculus is 
fairly commonsensical – the importance of instantaneous values 
of changing quantities (speed, for instance), some quantities are 
derived out of others (they are not measurable as a standalone 
quantity, such as speed is derived out of distance, and time), and 
the idea of integration as sum of similar parts (zig-zag parts versus 
standard-geometric parts of bigger area and volume). 

It is universally known that in an accident the speed of the car 
at the instance of the collision is all that matters, and not how fast 
or slow it was before that instant. The idea of derivative is similar 
to the commonplace understanding of pressure, a quantity derived 
out of force. The idea of anti-derivative is easy to observe around if 
we realise that it is more deterministic to have standard geometric 
shaped things than the slightest ‘zig-zag’/irregularly shaped things 
in predicting (surface) area or volume of things. 

Mathematics education must always build on the powerful and 
beautiful mathematical mind that we all are born with. And then no 
one will ever be left behind in excelling in math, forget passing the 
grade mathematics.

School mathematics kills common sense
Abstraction is the opposite of common sense, the latter is earthy, 
rooted in real-world situations and their quantitative expression.
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School math first decapitates thinking and visualising and then 
in later years goes back to it via word problems. But by then word 
problems cease to be easy. 

Unless we learn to abstract from real life situations right from 
the very beginning, even 3 + 5 = 8 is no debate in an abstracted 
form where we assume the units of 3 and 5 to be the same, but 
this is a big assumption. 

School math is highly abstracted, for instance, in the kindergarten 
itself numerals are equated with numbers, and the meaningful 
distinction between the two is snubbed. Thus, 2 + 4 = 6, always. 
However, in the world we live 2 + 4 is mostly not 6. 

Common sense refines with time as we ‘get wiser’ with responding 
to changing situations, and conditions. Common sense refinement 
cannot happen through instructions/teaching. In fact, any 
teaching/instruction will deconstruct and interfere with the 
refinement of math sense. Common sense is personal and grows 
out of ‘personal lessons’ not universal lessons. Common sense is not 
imparted, it ‘incrementally, discretely develops’ at undefinable and 
unexpected moments and situations. 

Math is the language of artificial intelligence
Mathematics is the language and substrate for artificial intelligence 
(AI); the atom of machine intelligence is data and molecules, the 
algorithms. No aspect of life and work is untouched by AI applications, 
and every adult and child must understand and appreciate the data 
and algorithms behind the specific AI applications.

Is mathematics the ONLY hope for humanity?
One of the more simplified  statements of the developmental 
condition is that the quantity and quality of development of a 
community are directly proportional to people’s proficiency in the 
language of academics (the language of science and technology). 
Natural resources, climatic conditions, etc., are secondary. 
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However, cultivating the highest competencies in natural languages 
(i.e., language of academics) at a mass scale is a science we still 
know little about, except perhaps the role of extensive reading and 
conversations in language development. But learning to read is a 
hard-earned acquisition, and quality conversation is a lost art. Does 
it mean a dead-end for us?

Fortunately, not. Mathematics as a language can do the trick. 
Mathematics is already a global language (the only one), and every 
human can master it. With artificial intelligence (AI) becoming the 
new global infrastructure, mathematics is increasingly becoming 
the language of all knowledge. It is projected that mathematics will 
be to biology, by the 2050s, what it is for physics today. And the 
unimaginable part is that the mathematics required for AI is the 
current K–12 school-level math syllabus!

The only pre-requisite for learning math – natural language
Surprise it may, if only we can precisely express a situation 
in a natural language, we can easily translate it into a 
mathematical expression. 

Talking of learning languages, we learn a language on the 
back of another we already know. A second language is learnt on 
the back of parallels with the first, and a third on the back of its 
similarity with the first and the second. And how do we begin 
the journey of learning the very first natural language? The 
language of art, music, gestures, etc. is a gift to all children, we 
use these for learning the first natural language. For example, we 
learn to differentiate between the cups and glasses, how-so-ever 
imaginatively crafted, by visualising the cups and glasses already 
seen physically, or in pictures.  
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The AI-age Mathematics

Section III

Obvious as it may be, mathematised mathematics has to be the ‘real 
mathematics’, mathematics as the language for all quantified objects 
and contexts. To us, the authors, ‘Cent Percent Mathematics’ sounds 
more apt as the name for real mathematics.

Epically, ‘Cent Percent Mathematics’ is just the mathematics that 
we all need to learn and hone in the Big Data, intelligent times. A 
mathematical mind that can mathematise real-world situations is 
all that we need, computational skills mean little.
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Soul-searching Mathematics

The first step in a journey that will take one the farthest is the 
shortest – it is standing still to soul-search, to think through ab 
initio. A dimension of soul-searching is evaluating (relevant) 
history to know all about the present.

Understanding mathematics would be much easier and better 
if we access its foundations historically. This book is no place to 
discuss why mathematicians must also be long on mathematical 
history except that it would encourage and empower creative 
and flexible thinking, besides massively expanding the repertoire 
of foundational knowledge. It would also make mathematics 
knowledge more soulful, and, thus,  more enjoyable, and unhooked.

Augustus De Morgan, a famous logician, was very vocal for 
his emphasis on the critical relevance of the idiosyncrasies of 
processes of mathematical discovery and famously equated 
them to the intellectual sharpness of ex post facto mathematical 
propositions. To him, all mathematical research would benefit 
from the world of such insights. He lamented, “It is astonishing 
how strangely mathematicians talk of the Mathematics because 
they do not know the history of their subject. By asserting what they 
conceive to be facts they distort its history. There is in the idea of 
everyone some particular sequence of propositions, which he has in 
his own mind, and he imagines that that sequence exists in history; 
that his own order is the historical order in which the propositions 
have been successively evolved.” 

Galileo has been called the father of observational astronomy, 
the father of modern physics, and even the father of science. He is 
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also credited with the ‘mathematisation’ of science. He wrote that 
the Book of Nature is ‘written in mathematical language, and its 
characters are triangles, circles and other geometric figures, without 
which it is impossible to humanly understand a word. Without 
these, one is wandering in a dark labyrinth.’ We need to go back to 
some basics. 

Why is math important?
Math has always been an important language. People who excelled 
in math also excelled in science and technology and had good 
chances of professional success. This does not at all imply that math 
is a pre-requisite for professional success, but, all the professionally 
successful people without a happy relationship with math did have 
to depend on some math-affiliated professionals to make better 
sense of their wealth, and grow it financially.

However, the importance of math has only multiplied in the 
last few decades. The advent of computing power and digital 
communication started to push math to the centre stage of 
technology and everyday life. Computers and the internet are 
feasible due to complex math (and simple math too). A computer 
is, simply put, a mathematical product. For example, everything, 
including words such as ‘great’, special symbols such as ‘@’, and 
numbers such as ‘12345’, is recognised and processed by computer 
using ‘unique binary number codes’ for every word, symbol, and 
number. Even photos are turned into very large binary codes.

In 2020, there is almost nothing in our lives that is unaffected by 
information technology. We can well imagine what would be the 
impact of information technology in the 2030s and beyond, when 
today’s adolescents become adults.

The fast-penetrating Artificial Intelligence is literally founded 
on mathematical modelling of real-life situations/conditions that 
uses linear algebra and introductory calculus. To be creative and 
successful in the massively digital world around us, the ability to 
naturally think mathematically is imperative.
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For example, each piece of art, design, or music is increasingly 
becoming a unique set of binary number codes. In fact, this is how 
Facebook recognizes our photos, and even automatically tags us on 
our childhood photos as each face is a vast, unique set of binary 
codes (that reflects the minutest features of our faces).

3D printing, a big source of revolution in our lives, takes data 
(numbers) as input (besides materials) to print whatever we seek. 
For example, to print/make a 1-litre plastic water bottle using a 3D 
printer, we need to feed the bottle design and specifications in the 
form of a big binary number code, not as a physical mould of the 
bottle to be made.

Friendship with math pays
For school-going children, there are literally no model philomath 
adults. Fear of math is probably the most common social affliction. 
This creates a social context for children which is not conducive 
to developing competence and interest in math. Math needs to be 
learned again by all parents for their children to learn math.

A happy association with math is almost a pre-requisite for 
a happy childhood and a happy school-life. A disproportionate 
amount of time, attention, and money is invested in supplementing 
and complementing math education at school, and this affects 
performance in other curricular and co-curricular subjects and 
interests. Struggling in math has a cascading effect on overall 
learning. Thus, math must be specially attended to.

Evidently, for the parents of school-going children, the easiest 
way to gift them a cherishable childhood is by becoming a 
co-learner in math and their preferred math buddy. Parents do not 
need to be ahead of their children, they just need to be with them 
as they discover math concepts. Learning math to ‘teach’ math to 
your children will take the least effort compared to all other 
subjects/ domains of knowledge.

This implication for parents is important irrespective of schools 
and teachers doing a better job of teaching math.
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Biology and math together?
To top it all, in this century, we expect to mathematise just about 
everything we know of today. For example, by 2050, math is 
expected to be to biology what math is to physics today (physics is 
almost mathematics). By 2050, one can expect the human body to 
be a set of deterministic ‘mathematical equations’ with individual 
differences being reflected in the data inputs to the equations.

A significant portion of genetics depends on quantitative 
data. Many mathematical techniques (such as probability and 
standard deviation) are used extensively when studying genes. 
We use probability to predict how frequently a particular genetic 
configuration manifests. Emerging fields of study such as 
bioinformatics use statistics-based computer programs to scan 
DNA and analyse genes.

As  commonplace evidence of math getting simpler are the 
claims regarding education to become data scientists. The 
advertisements talk of the possibility of becoming a data scientist 
without the need for a specific technical background (i.e., without 
much of a math background)!

To sum it up, math is becoming more important by the 
day for two important reasons – first, math is the language of 
all technologies and we are witnessing an explosion of new 
technologies, and second, the ‘must-know’ math is made easier 
(the ‘cent percent’ mathematics).

Why math is the best fit to ensure humanization?
Mathematics is truly universal in another way also – no society or  
country may know, or harness any additional, newer mathematical 
knowledge, that remains hidden from the rest for long. This is very 
unlike scientific knowledge where differences among societies and 
countries are the norm and the source of different development 
trajectories. Mathematics seamlessly and equally belongs to 
all of humanity, it takes nothing to access, apply, and augment 
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mathematical knowledge. In fact, Srinivas Ramanujan’s recognition 
in the world of mathematics gratifyingly displays the distinctive 
qualities of the architecture of mathematics – integrity, verifiability, 
transparency, infinite jig-saw and sheer elegance/joy.

It is almost a norm for individuals, communities, regions, 
societies, and nations to be variedly placed when it comes to 
science and technology. Mathematics is a great equalizer, it is 
a sphere of knowledge that is peerlessly zero-cost to research 
and apply. Besides, all of K-12 mathematics education could be 
comprehensively contextualized for every kind of society that exists 
today, without any conceptual dilution. The first universal, default 
human characteristics can only be accomplished by mathematical 
thinking, whenever and however it happens.  

History is replete with how civilizational stature came on to 
societies that placed mathematical thinking on a higher pedestal. We 
can well imagine the metamorphosis upon expanding mathematical 
imprint to all of humanity.

Mathematics is (just) the foundation of ‘Being Human’  
Mathematics is a class of its own for another reason – it consumes 
a disproportionate amount of time, effort, attention, resources, 
and prayers of families and students when compared with all other 
subjects put together. And this is true of all societies, communities, 
and families. Naturally, success in mathematics in K-12 leads to freed-
up time and resources for due attention to other subjects, and that 
success directly supports better learning of science and economics. 

Ensuring every child succeeds in mathematics is to put the 
children on the path to becoming multi-intelligent adults. On 
another plane, a sharp focus on mathematisation imparts automatic 
momentum to the all-round development of an increasingly larger 
percentage of children.  

Indeed, it would be just and true to assert that the role of 
mathematics in humanisation is as informal, indirect, and 
multifaceted, as stark as it is in changing habits of thinking.   
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Mathematisation = Happy childhood = Successful adult
The effective idols of K-12 are the ‘mathematics geeks, toppers’, 
notwithstanding their performance in languages, arts, social 
sciences, and even science. The life of mathematics toppers 
in school years is enviously sorted and ensures coveted perks. 
Mathematisation will ensure a growing fraction of children live 
developmentally appropriate childhood years and happier families.  
And happy childhood nurtures confident, caring, and learning 
adults; only a happy child can ever learn or seek to learn.   
End of confusion – mathematics as a language

A raging debate, rather confusion and conundrum, in 
mathematics education, since antiquity, is how the idea of language 
literacy has been borrowed/brought into mathematics education. 
Quantitative literacy as the goal of K-12 mathematics curricula has 
reduced mathematics to arithmetisation of the curricula – absolute 
abstraction (even simplest ‘word problems’ turn nightmarish for 
children, globally), ∑ methods, and ‘step by step evaluation’. Thus, 
courses in algebra, geometry, data, vectors, trigonometry, and 
even calculus are have soul sucked out of them, and turned into 
mechanical chores. 

 The quantitative literacy and mathematics disjoint must end, now, 
and forever. There is only mathematics to be learnt, the real (100%, 
full) mathematics. Of course, real mathematics is ‘mathematics as 
a language’ and it is constitutively quantitative literacy in spirit, 
conceptually threaded and networked in mind, and methodised 
in body. Once we start learning mathematics as a language, we 
will be perceiving, thinking, and expressing situations and objects 
quantitatively, and more accurately.

It may be interesting to relate mathematics as a language to the 
most popular sports in the world – soccer and cricket. In both 
games, the meticulous position of players in the field is more than 
half the defence and attack. This positioning is almost entirely 
mathematical – visualising the speed of the ball, the speed of the 
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players chasing or approaching the ball, the distances and the angles 
between the positions, the shortest distance between certain manned 
and unmanned positions, and more. And this spatial intelligence is 
visible in the winning captains. 

The most important triumvirate 

Nature  Maybe, the weakest link in the institutionalized school 
education system is the ‘know-why, know-how, and know-what’ of 
nature. At best, we study nature in fractional pieces and all mostly 
insularly, for instance, the water cycle is studied as a physical 
phenomenon, as an example of evaporation and condensation but 
we miss the essence – evaporation and condensation as a ‘natural 
phenomenon’, as a routine yet extremely sophisticated and ‘organic’ 
element of a whole. We completely miss to appreciating the beauty, 
and intricate details of the water cycle. 

Nature may best be seen as the whole, the one that holds all the 
living and non-living things in the world that are not created by 
humans, as well as all the events and processes that are affected by 
humans. Nature follows an intricate web of cause and effect, ‘rules’ 
that are incessantly, and unchangingly at display. Nature lives by an 
unwritten code.

An interesting part of the aforementioned ‘definition’ of nature is 
that acts of all living beings, except humans are an integral part of 
nature; we think and behave in ‘unnatural’ ways, such as upsetting 
the food web of a region or planting a non-native life in the region 
(that may hurt the region in the long run).

Nature and science  Science is the name given to the body of 
knowledge that is essentially a collection of all the codes of nature’s 
behaviour that we have successfully decoded and articulated 
mathematically (such as in physics and chemistry), or descriptively 
(as in biology). We express such knowledge as scientific laws, and 
the laws are true in all conditions as defined in the letters of the law. 
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The collected laws in science cannot exceed what actually 
happens, or does not, in nature; a confident understanding of 
the ‘nature of nature’ is the best science can get to. For example, 
science is still short on fully understanding the ways of nature, 
such as weather. This is best evidenced in the quality of predictions 
of weather (science) models for shorter time periods – Nowcast 
(24- hour weather prediction) is less accurate than short-range 
forecast (1–3 days). 

We discover, not invent (make up) scientific facts and laws. We 
observe, experience, or analyse acts in nature, and then create 
statements about a particular act in nature (called hypothesis). 
We then set up experiments to verify hypotheses, the true ones 
become laws. 

Science and technology   The relationship between nature and science 
is repeated in science and technology – technology cannot exceed 
the body of scientific laws at any point in time. Technology is ‘man-
made nature’, replicating acts in nature. The implosion of the Titan 
at 30,000 below sea level is an example of all the technologies used 
in making the submersible live up to all the science we know about 
such conditions. 

Similarly, on the hardware side, quantum computers are waiting 
for manufacturing ‘near zero-defect’, extremely ‘quiet materials’ 
materials, not just the base material but also at the surface and at 
the interface of materials. We know the kind of material, and the 
science, but not enough to make them in quantity.

Nature of technology  Now the crux of this discussion – technology 
is 100% mathematised knowledge in action. Every technology, 
the simplest ones, is 100% predictable in its input-output 
transformations. The ‘science’ of technology implies the same 
behaviour, time and again; for example, we would seek the repair 
of a faucet we are used to if there is unexpected variation in its 
dispensing for a given turn. An e-car will run the same distance 
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at full charge under exactly similar driver, traffic, weather, and 
road conditions.  

Mathematics is at the heart of the servile behaviour of technologies.

Humanity and technology  Science is human’s earliest and most 
passionate pursuit for the sake of survival and a better life. Naturally, 
technology is human’s earliest friend and the only presence in our 
lives that has continuously stayed and propped the rise as well as 
fall of civilisations. Intensification of technology is a secular trend.

	Yet, something 	 has 	 dramatically 	changed about technology, 
it is not just changing society, it is changing what it means to be 
human. Its pace, sweep, acuteness, unforeseeable innovations, and 
profoundness are all new. The best of all, in the end, technology will 
propel us to what is called by some as Society 5.0 – a humanity that 
best balances real and virtual, sustainably.   

In that process, humanity is getting unprecedentedly 
mathematised. 

We and humanity  Humanity is a network of innumerable, 
overlapping societies. Yet, society is humanity’s womb. Society is 
the magic in our lives. Society is the invisible fabric that holds us 
all together, much like the way gravity is like an ‘endless taut fabric 
across the universe’, a natural outcome of the existence of celestial 
bodies in space. It is that ‘fabric’ that warps, bends, pulls, or pushes 
everybody, under the ‘weight’ of the other bodies around them; 
that is also how heavier bodies exert more force on others, more 
gravitational force on others. Gravity holds the universe together, 
society holds the life in the universe!  Yet, the new millennium is 
not all good news for societies. Despite the inherent robustness and 
vibrancy in the very design of societies, we are steadily becoming 
‘thin cultured’, hollowing out societies. But we must not forget that 
the need for society is biological, much like oxygen. 

Every one of us must place society at the centre of our economic 
and political life.  
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The irony of it all
Mathematics education is fractured in a very paradoxical way – 
the real mathematical foundation and applications for both ends 
of school students are actually the same poor quality. Well over 
three-fourths of all children are formally evaluated to be strugglers 
in mathematics@school. The minority of students evaluated to 
be good, or outstanding in mathematics@school are just that – 
whatever schools call as mathematics; they have no way to know 
better – anything beyond the totally methodized, blindly practised 
and abstract number crunching. Here are ten real mathematics 
questions from K-10 syllabi, and see for yourself how many of any 
of these ring a bell –

•	 How 1
0

 is undefined, but 0
1

 is 0? 

Hint: The definition of division.
•	 II + IV = VI? Yes/ No/ Depends
•	 ‘7 – 2 = 5’ is ‘uncertain’. True/ False/ Depends
•	 Fill in the blank spaces to make the statement on face value and 

place value a correct one.
Value of a ……. at a place in a …….. = Face value of the digit × 
….. of the ….. at which the digit is placed

•	 What is 2 × 3? 6/ 3 × 2/ both 6 and 3 × 2/ neither 6 nor 3 × 2

•	 Visualise 3
4

 as a division and 3
4

 as a fraction. 

•	 Compare 81
2

 and 
 
 
 

8
1
2

.

•	 Tan-1 gives us an angle. True, False, or it is a bit ambiguous 
question. 

•	 Why ‘combination lock’ is a misnomer, mathematically 
incorrect?

•	 Derive the mean formula in 3 steps. Recall, the formula is 
mean = sum of numbers/the total count of numbers



Mathematising Mathematics    111

Of course, we, the authors, would only be delighted if the questions 
seemed familiar. Answers are never important. We have not 
attempted but would be happy if you seek artificial intelligence (AI) 
chatbot ChatGPT’s help with these questions.

 Their quantitative literacy and confidence are severely hurt, 
bordering on paranoia but the remaining minority are stressed over 
mathematics@school.

Educational transformations need epochal thrust
J. David Markham, an internationally acclaimed historian, 
emphasizes the organic connection between education systems and 
the state of societies, stating that much of the history of Europe can 
be observed in the ascent and decline of its educational systems. 

We must be real. Can populist democracies or the incumbent 
elites (who are from current institutions) reform education and seek 
the same outcome K-12 for all the children of the world? History 
educates us that this is next to impossible, history helping us with 
lessons for a better present. 

As evidence, three epochal moments are particularly valuable 
lessons – the return of the ancient Roman Empire as the Holy 
Roman Empire, Islam’s Golden Age that collated and added to 
the knowledge of the world that also triggered the Renaissance in 
Europe, and the French revolution aimed to establish lofty idealistic 
goals of liberty, equality, and fraternity. The French also revealed 
that the first (clergy) and the second estate (aristocracy) sought  
education reforms.   The poor and the peasants (the third estate) 
did not seek educational reforms, it was the.
Markham particularly emphasises the connection when he links 
the fall of Rome (Western Roman Empire) in the fifth century to 
the Dark Ages in Europe and the subsequent decline in the level of 
intellectual development among the people. 

We are aware that the Golden Age of Islam emerged seemingly 
out of nowhere, aiming to fill the intellectual void in Europe. It began 
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in the seventh century, driven by the ambition to become the  center 
for knowledge and learning for the world. This remarkable period 
is believed to have been fueled by advancements in paper-making 
technology and the exceptional translation efforts covering 'all 
secular/academic books' available during that time. This translation 
endeavor included works in Greek, Sanskrit, Syriac (which already 
had extensive translations of Greek medical books, among others), 
and more, spanning the eighth to the tenth century. 

As a result, numerous academic and scientific discoveries unfolded 
during this period up to the thirteenth century, contributing to 
the Renaissance (beginning in the fourteenth century) and later 
the Enlightenment (commencing in the seventeenth century) in 
Europe. The decimal number system, featuring a positional system 
that includes zero, made its way to Europe in the thirteenth century 
from Islamic North Africa with Fibonacci. This event played a pivotal 
role in triggering a knowledge revolution in Europe. According to 
British writer and mathematics communicator Alex Bellos, the 
Renaissance was indeed sparked by the introduction of the (Indo-)
Arabic number system, which includes zero.

The founding of the Holy Roman Empire (considered holy 
because it was sanctioned by the Pope and 'Roman' because it 
reunited parts of the last Western Roman Empire) in 800 CE on 
Christmas Day marked a new beginning in the role of education 
for humanity. The first emperor, Charlemagne, believed that the 
only way to keep his empire flourishing was through education. 
He transformed the character of the palace school and established 
similar ones throughout his empire. The focus shifted from religious 
education, primarily the translation and examination of holy texts, 
to a broader curriculum including grammar, rhetoric, music, 
arithmetic, geometry, and astronomy (known as liberal arts at that 
time). The formal inclusion of mathematics, specifically arithmetic 
and geometry, in schools was revolutionary. However, access to 
education remained elitist, limited to a fraction of society.
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Incidentally, the creation of the explicitly Christian empire 
strengthened cathedral schools for clergy education in 'letters' 
to master reading and writing holy texts. Some of these schools 
evolved into universities, such as Oxford by the twelfth century and 
Cambridge by the thirteenth. Until the early nineteenth century, 
nearly three-fourths of Oxbridge graduates entered the Church. 
Among the rest, from the elite class - aristocracy or the wealthy, only 
a few pursued professions, and over 50% of Members of Parliament 
came from this group. Importantly, the emphasis on 'forming the 
minds of the elite' remains prevalent in many leading universities 
worldwide to this day. Of course, newer universities emerged from 
the Renaissance, Enlightenment, and the emerging middle class in 
the industrial society, focusing on practical arts and professions, as 
well as innovation and research.

The educational landscape in France leading up to the French 
Revolution was characterized by three significant features:

Centralization The educational system was centralized, with the 
church owning and operating most educational institutions. The 
focus was predominantly on religious education, emphasizing 
the translation and examination of holy texts. The origins of 
education can be traced back to the palace school, later extending 
to monasteries across the kingdom.

Ecclesiastical Control The church exercised authority over the scope 
and content of 'liberal' education. Teachers were mandated to obtain 
licenses from the church.

Elitist Access Education was accessible to only a small elite segment 
of society. The exclusive nature of students meant that only a fraction 
of the population had the privilege of attending schools.

These three characteristics continued to dominate education in 
France for centuries. The aspects of centralization and elitism in 
educational institutions persist to some extent even today. 
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Reorganising Mathematics Education
Locus of reboot is family

Mathematics has experienced remarkable expansion in its domains, 
coupled with increased foundational and procedural rigor 
over the past two centuries. For those interested, Cauchy’s Real 
Analysis (1821) can be regarded as an epochal pinnacle in rigor. 
However, math education has not embraced such reforms; in fact, 
it has undergone changes that could be considered detrimental, 
such as the introduction of standardized tests and the dilution of 
mathematics curricula through the legitimization of ‘quantitative 
literacy. The eminent French mathematician Henri Poincaré offers 
a critical perspective on the polarities in mathematics, emphasizing 
that studying the works of both great and lesser mathematicians 
reveals the presence of two opposite tendencies or, more precisely, 
two entirely different kinds of minds. 

The two minds Poincaré was referring to are the logic-centric 
mathematical discipline and the intuition-powered force of 
reading mathematical relationships and objects in different 
situations. The logical mind adheres to rigorous applications 
of established mathematics, avoiding missteps in adventurous 
mathematising. On the other hand, the intuitive mind may 
seem to traverse seemingly unmathematical paths but ultimately 
withstands scrutiny through standard rigor, guided by conceptual 
integrity and reconceptualization prowess. Clearly, both kinds of 
minds have thrived among mathematicians and physicists alike.

Mathematics education must contexualise the content and nurture 
it as a sense to focus on building narratives and intuitive abilities. We 
need to reform mathematics education until we stop teaching it! 
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Humanising mathematics education – Mathematics as a right 
Mathematical thinking is an equal gift at birth, we have made it 
hard to retain the same just past the unique childhood phase of 
human development.

Let us take a step back. How do six-month-old children learn to 
differentiate between music (pleasing to the ears) and noise (and 
cry in response)? How does one train a six-month-old baby to fall 
asleep to melodious music?

Do we teach drawing/colouring to eighteen-month-olds 
to express themselves? The drawings are always a medium to 
expansively communicate thoughts and imagination, unhindered 
by the demands of a natural language – words and structure.

Do we teach children how to walk? These, and more, are innate 
developmental milestones for every child. Similarly, learning the 
mother tongue is a natural ability. The simplest evidence is that all 
children automatically learn the language spoken by their mother, 
whichever it may be. This is equally true for a language called math; 
if mothers (and other involved adults around the children) converse 
with the children in it.

Indeed, learning to understand others and express oneself is very 
natural for children and is key to their survival (in fact, the offspring 
of all animals also have this ability). Being born human implies that 
it is also natural for us to effectively use math to express ourselves 
and be understood by others when conversing about quantities. 
However, the formal education of math often destroys the language, 
reducing it to a set of abstract algorithms and methods.

It is morally wrong to make an unnatural exception for math 
education. If we can ensure the introduction to and interaction 
with math in its true nature, then no child would struggle with 
math or fear it.

The real seat of learning for all languages is the home, the 
neighborhood, and the community. Unfortunately, we make an 
exception for math education by often ignoring family involvement. 
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This leads us to some of the most important questions about 
math education: Why is math not taught by parents or neighbors 
in the same way as drawing, music, playing/dancing/gestures, the 
mother tongue, and even a second language? Why do parents fail in 
enabling their children to learn math?

Simply put, math is another language—who may have had any 
difficulty in learning mother tongue? It should be no different when 
it comes to learning math. Math is a way to think about real-life and 
imaginative situations using a much smaller set of mathematical 
symbols and rules.

While all other languages like mother tongue, drawing, music, 
playing/dancing/gestures, etc., manifest and are nurtured to a 
great extent by the time children enter school, math waits for the 
school! The conversational competence reached by 4-year-olds in 
their mother tongue is variable; it depends on the diversity and 
richness of conversational language and experiences to which 
the child is exposed. On the other hand, the competence of pre-
schoolers in mathematics is almost independent of their parents' 
educational and socioeconomic setting. For instance, all adults 
know estimation, comparison, counting, etc. However, most 
parents stay away from the conscious and concerted mathematics 
literacy of pre-schoolers. Mathematics education is entirely left 
on the shoulders of teachers and the mathematical competence of 
the authors of mathematics textbooks. 

The very small minority of families that do introduce qualitative 
quantification, such as big, small, more, less, etc., leaves it at that. 
Such a gross introduction to the sense of quantity is actually an 
impediment in laying the foundations of mathematics as a very 
precise, extremely nuanced, and definitive language. For instance, 
there is little integration of pre-number experiences and vocabulary, 
familiarity with estimation through the Approximate Number 
System (ANS), and perceptual and conceptual subitising. Often, 
whatever the interaction with mathematics is, it is inappropriate in 
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terms of invested time and diversity. And in all this, schools jump to 
counting using quantity numbers, not counting numbers, leaving 
children significantly misaligned to mathematical sense.

In case the severity of the math education deficit is not obvious, 
consider what would happen if schools, not parents, were to ‘teach 
kids how to walk’. If it is still difficult to imagine the deficit in math 
education, just think of the relationship most of us had with math 
in our school days. 

If you had been taught well, you would have fallen in love with 
math, and your life and career would have benefited from a happy 
association with math. 

Yes, the way math is taught in schools is of inexcusably poor 
quality; the evidence is that being ‘poor in math’ is considered 
one sign of creative geniuses; also, it is the only socially acceptable 
‘failure’ globally.

For the record, K–10 math curricula are no more than three 
academic years’ worth of ‘content’. Math is too rigidly hierarchical 
to be ‘taught’ for 12 years; formal math education is too slow, and 
this is hurting it. 

The challenge of math education is growing with each generation; 
a bigger percentage of parents cannot support the math education 
of their children with each passing generation! This defies all logic 
and gravity!

Despite our most amazing achievements in every other domain 
of knowledge and practice, formal and informal math education 
remains an enigma.

It is unnatural for any child to be a ‘slow learner’ in math!

Humanity’s cardinal mistake of teaching math
If the title is unbelievable and unsettling for most and kind of déjà 
vu for others, let it be upfront that mathematics is one domain of 
knowledge that cannot be taught at the school level. The act and fact 
of teaching mathematics in school years, especially the K-10 years, 
is humanity’s undoing. 
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      Curricularised, methodised, and abstracted math teaching has 
had the precisely opposite effect – push-back by children, every one 
of them in schools, and to the extent that ‘math phobia’ is peerlessly 
associated with some kind of pride, a badge of honour, a membership 
to an imaginary exclusive club, all over the world. Worse, most of 
us lose out on reading, play, art, music, social science, theatre, and 
above all, a happy childhood and parents chasing math because 
brilliance is equated with math in school academics. 

We cannot sweat it out  
Grade-wise curricula and syllabi, textbooks, assessments, 
gamification, ‘math labs’, lesson plans, and ‘teachers’ systematically 
destroy logical and mathematical thinking that is an innate human 
ability and an equal one among all infants. It can only be uncovered 
in a way that is wholly personalised for each child; foundational 
math cannot be subservient to standard, universal concept maps.

The more we have sweat in educating math, the higher the 
teacher centricity, the thicker the math textbooks, and standardised 
the assessments, the poorer the K-10 mathematical thinking. Math 
education, and then everything else, must be re-rooted. 

Intellectual incapacity of even dreaming wholesale change
Math quite characterises the blind spots in human evolution – blame 
the children, childhood is superfluous, and inequity is natural.

UK PM’s clarion call and commitment to ensure math education 
for all till 18 years of age is making waves in the power corridors 
across the world. He emphasized the need for a profound shift in 
mindset in education today, urging a reimagining of our approach 
to numeracy. The Prime Minister stated that ensuring every child 
receives the highest possible standard of education was the single 
most important reason for his entry into politics.

However, the PM's office clarified that the government does 
not foresee making Math A-Level compulsory for all 16-year-
olds. Unfortunately, and still inexplicably, improvements in math 
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education can only exhibit a limited degree of boldness and 
ambition. Math education remains somewhat untouchable, still 
far beyond control across nations and even in the best universities, 
afflicted with paralysis of will and intellectual incapacity to think 
beyond improvisations.  

Nearly 200 years of shame
The most certain, vivid, and personal experience and fact around 
the current school system – K-12 – is the secular trend of decline 
in math achievement of pupils across the globe. This is despite 
continuous interventions and innovations in math education 
processes and resources; there is something fundamentally wrong 
with math education in schools.

With all modesty as a school educator and mathematician, but 
fired by a definite sense of angst and loss, the writing has been on 
the wall in all the years since the current form of institutionalisation 
of education of children around the mid-nineteenth century. Here 
is just a sample of the hundreds of wrong, confusing, soulless, 
‘groundless’, and even illogical contents of teaching math in schools:

School math has never really corrected or modified itself to 

explain how and why ‘8 divided by 1
2

’ is 16 because it is not; it is 16 

1
2

s (16 halves), just as ‘8 divided by 4’ is 2 4s (2 fours)! 16 is the wrong 

meaning of ‘8 divided by 1
2

 ’; it is also anti-science in the sense that 

8 things can never be equal to 16 things. And the explanation of 
‘taking the 2 up and multiplying with 8’ is utter nonsense.

1, 2, 3, 4, 5 … are used for counting, instead of First (I), Second 
(II), Third (III), etc.
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Pictorially,

First
baseball

1

Second
baseball

2

Third
baseball

3

Fourth
baseball

4

Fifth
baseball

5

Sixth
baseball

6

Counting up to six

6 baseballs

Interestingly, counting (ordinal) numbers come from natural 
languages, not math (quantity or cardinal numbers originate 
in math). Introducing and using ordinal numbers for counting 
would significantly simplify understanding of quantity and 
operations for children!

School math contains poorly-delineated, unexplained, joylessly 
presented, and soulless concepts and methods. For instance, factors 
of a number are taught to be obtained so that when multiplied, 
they give the number as their product; 2, 5, and 7 are the factors of 
70, as 70 = 2 × 5 × 7. There is no explanation for why the original 
number can be obtained by multiplying the factors and why 
addition, subtraction and division cannot be used to find ‘parts’ of 
the number that are the factors. Incidentally, a beautiful explanation 
underlies why the other three operations cannot be used as factors, 
and the explanation brings forth the simplicity and lucidity of math.

It is groundless, baseless, to teach 'borrow' and 'carry' as properties 
of operations (subtraction and addition, respectively); the two are 
natural ‘implications’ of the positional number system (the decimal 
number system).

Another example of baseless (and wrong) teaching of mathematics 
is the commonality in writing, speaking, and most typical 

understanding of 3
5

 as a fraction and 3
5

 as a division – both are 
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considered the same (0.6, for example). But 3
5

 as a fraction is one 

number and quantity, and 3 and 5 are not distinct but together, and 
3
5

 as a division has 3 and 5 as separate numbers and quantity and 

represents two quantities and numbers – a quotient and a remainder.
School math, in Grade III or IV, teaches 
II (Second) + IV (Fourth) = VI (Sixth)
This is patently illogical. The point is best understood through 

an everyday example – If I own the second-floor and fourth-floor 
houses of a multi-storey building, I own two houses, not the sixth-
floor or six houses!

It is inexcusable that except for some enthusiastic teachers and 
some national curricula, math education remains riddled with a 
few hundred holes of the abovementioned kind. Of course, even 
these efforts are eventually impactless on students because they are 
nowhere curricula-wide.

Mathematicians missing the faux-math at schools
Mathematicians are a class by themselves as individuals and 
professionals. They are personally known to be private, geeky, 
and even reclusive. Professionally, they have the unique privilege 
of choosing the challenges, setting their goals, and operating in 
intensely intellectual, specialised, and committed conditions. 
The work of mathematicians is almost always an input to other 
mathematicians or leading-edge researchers.

Apparently, and not unexpectedly, the irrationality of disastrously 
poor outcomes of math education in K-12 has not rattled 
mathematicians. It is crucial to deliberate that if there is nothing wrong 
with the children or mathematics, then math education is flawed.

How may any (normal, average) human child struggle in math, a 
wholly logic-based knowledge domain? Human children cannot be 
struggling in math.
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No mathematician seems to have publicly and vigorously argued 
against the fauxness of math in school, as illustrated in just the 
previous section. Mathematicians and the fraction of students who 
do crack the code of the faux-math in school (such as 8 is 16 as 2 of 
1
2

 in the denominator goes up for multiplication with 8) bask in the 

glory of being bright, and more intelligent and leave things there for 
all others.

Almost all of us have missed the ‘mathematical sense’ – 
mathematical thinking, the language that is math, and the 
everyday realness of mathematics. The mathematics known to 
mathematicians – the abstracted one – is handed down to the KG 
students; the state of math education is no surprise. Of course, 
abstraction is at the heart of math, being the language of patterns 
and the orderly universe, but K-12 math better be just real, natural.

Mathematics (education) is a massacre of rationality
It was, and remains, a parody of Charles Dickens’s Hard Times, 

of children as ‘little pitchers’ to be filled so full of mathematics. 
Ironically, that is how to introduce and cultivate any kind of habit, 
skill, or knowledge new to the target audience.

Thus, if wholly decontextualised and abstracted mathematics and 
mathematics education were right, math education should have 
worked over centuries.

However, if mathematical sense and thinking are evidently in us, 
we must end the current design now. Indeed, it is strange that using 
computing devices is still not allowed in mathematics classrooms, 
as well as assessments and examinations.

Mathematics reboots educational opportunities
Mathematics as a language offers the most stunning developmental 
trajectory – it puts all 8 billion of us today on the same pedestal in 
a language that is the language of AI – the fast-emerging people’s 
‘meta-language’! However, (real) mathematics is alien to us all; it is 
a way of thinking that was killed for us all in pre-school itself.
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   Children excelling in mathematics is only a function of intent, 
involvement, and effort at the family and community level in using 
mathematics as a language. It has little to do with educational ‘levels’ 
of parents and communities. This rebooting of equal scholastic 
opportunity for all children is an opportunity to put us all on a 
sustainable growth path. Of course, the privileged amongst us are 
not disadvantaged as they can learn the language of mathematics 
faster than most others.
     We cannot imagine any other opportunity for humanity in this 
century to deterministically steer us in a new direction that gives us 
hope and assurance of survival and growth.

Future of math education in school
Math education should move beyond classrooms and must become 
the responsibility of families. Schools may be used for providing a 
community of co-learners, tutoring support to those who demand 
it, and to handhold parents in a similar way.
     As mentioned, mathematics as a language is as alien to schools 
and teachers as to parents. Parents would have to learn mathematics 
anyway, even if schools were to lead the change to mathematics 
education. The best course would be for parents to learn and take 
the lead in changing the richness of mathematical discussions at 
home and in the community.

Who cares?
‘What is math?’ remains unanswered in 14 years of school education. 
Worse, a good majority of parents, students, teachers, school 
leaders, and policymakers do not even want the answer; math is ‘not 
for them’. Ironically, even the majority in the minority who care for 
math education pursue math education for instrumental values – a 
better career! And there is more – for the exceptional few, for whom 
math is pure joy, math is one of their love affairs for life; expectedly, 
‘what is math’ is not really relevant to them.
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Parents should care
Yes, we need to make a new beginning in math education. We must 
‘discover’ and agree on ‘what is math?’ and widely disseminate it 
across the globe. It is interesting to see other evidence of math as 
the only universal language – ‘What is math’ is a global blind spot; 
no nation has got it right! Refounding, rethinking, and redesigning 
school math education is a humanity-wide challenge. Naturally, 
my elaboration of ‘What is math?’ must be seen in this context as 
a contribution in this direction. My story of ‘What is math?’ is also 
shaped by my target audience – parents. Parents at large would 
anyway be left out of formal (re)education on ‘what is math?’, as 
educators and policymakers are the only targets of such efforts. I 
consider my focus on parents as the more critical contribution to 
math education.

Children will also be parents
After at least five generations of adults educated in school (in about 
175 years of the modern, mass form of school education prevalent 
today), most of us cannot confidently teach math to our children 
in the primary grade. It hurts to live with the feeling that nothing 
better can be expected of the children in schools today. It is less 
likely that there may be adults who would joyously teach math to 
the children in primary grades!

     Let us learn the ‘real math’, a thinking process and resource that 
expands and sharpens with every living moment!



125

Philosophy of Mathematics Education
The weakest link

A philosophical lens on any domain of knowledge enhances its 
capacities to organise ideas and issues, thereby better presenting 
concepts, definitions, arguments, and problems.

A clear larger issue in K-12 mathematics education is the balance 
between contextualisation (mathematics as a language - creative and 
intuitive play) and de-contextualisation (abstracted and procedural 
rigour). And the balance is not about any absolute choices; it is a 
dynamic choice; for instance, grade, topic, practice, and remediation 
are just some of the determinants of the extent of balance. Relevantly, 
the dominant position of contextualisation of mathematics is 
foundational in many ways. The US civil rights activist Malcolm 
X hits the nail on the head about the facelessness of the current, 
abstracted mathematics education when he expressed regret, saying 
that the subject he most disliked was mathematics. Upon reflection, 
he believed the reason was that mathematics allows no room for 
argument. If a mistake was made, that was all there was to it.

However, it would be unfair and wrong not to emphasise the 
role and importance of rigour in mathematical research and 
applications – for instance, precise and universal definition of 
concepts, sound methodological presentation, and established 
procedures. The rigorous reinterpretation of the calculus 
undertaken by Augustin-Louis Cauchy in the early nineteenth 
century was indeed a major intellectual revolution in calculus, 
larger mathematics, and science. 
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It started the ever-growing place of calculus and mathematics in 
our lives and changed the development of science and technology 
forever. In fact, Leibniz, the famous ‘co-founder of calculus’, is 
known to have talked about how his ‘algebra based calculus’ had 
“outstripped the methods of traditional mathematics.” Cauchy 
articulated that he endeavoured to provide methods with the rigour 
essential in geometry, eliminating the need to resort to rationales based 
on the generality of algebra. To be simple, this was also Cauchy’s tribute 
to Euclid for the rigour he had brought to geometry and mathematics 
over 2,000 years earlier, the first of such attempts that has lasted to date.
    However, we have little reason to be dragged into this debate. 
In respect of this book, the interest is limited to mathematics 
education in K-12.

The context
Philosophy of mathematics is a flourishing domain of knowledge, 
though what it does to mathematicians’ work is another matter. The 
philosophy of mathematics has remotely impacted the philosophical 
direction and content of mathematics education.

It is a contradiction to even attempt a well-grounded and evolving 
philosophical substrate for something that philosophy finds hard to 
circumscribe (‘math is hard to be comprehensively penned for its 
present and futuristic focus and impact’). And when the majority 
views mathematics to be predominantly about ‘abstract structures’.

No wonder the default goal and means of mathematics education 
is abstractness, starting well into the pre-school and pre-primary 
years. The ill-foundation of mathematics as black or white, correct 
or wrong, right method or the wrong method, uncritical and uni-
solution-focused thinking, is laid within weeks of entering the 
portals of the formal education system. For instance, approximation 
as an authentic and necessary mathematical experience and 
structure for quantification is killed with the quick introduction of 
definitive counting for quantification.
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Indeed, there is a good body of educationally sound and 
biologically gifted knowledge of approximate number systems 
and subitising; it is proven a priori knowledge, for we share it with 
animals. Many school systems, including those in India, almost 
miss this bus entirely, and all others need to do justice to adequately 
hone the sense of estimation/approximation.

Next, counting misses a critical beat and gallops into an 
unfathomable ditch. All of mathematics is about quantification, the 
most superior input to decision-making (for the most part), and 
counting is all that is. All mathematics, starting from the arithmetical 
operations, is about making counting faster. For instance, addition 
is faster in quantifying a given set of things than counting the same, 
multiplication is a faster quantification process than addition (when 
adding all the same quantities), the exponent is even quicker, and 
using logarithm is the fastest we have (it is the same order of relative 
time for computers too).

School systems reduce counting to 1, 2, 3 …, a gross 
misrepresentation of counting; 1, 2, 3 ... are not counting (ordinal) 
numbers but quantity (cardinal) numbers. Counting numbers are 
First, Second, Third, …; elsewhere, we have detailed how unfortunate 
is this global blind spot, yet there is more – the foundational idea 
of ‘unit of counting/quantity’ is lost in this process and plays havoc 
with children’s quantitative visualisation. More relevantly, this state 
of affairs is in good part due to the lack of simple symbols for ordinal 
numbers and children that young cannot write ‘First’, ‘Second’, etc.

An essential cause of this wrong is also the fact that counting 
numbers is rooted in the natural languages; the quantity numbers 
are the creation of mathematics; unsurprisingly, mathematicians 
and mathematics educators fail to borrow the counting number 
names to mathematics. Suppose some of you are thinking about 
using Roman numbers, an ordinal number system, to learn to count 
right. In that case, you are in the right direction – we need to make 
a simpler version of Roman numbers (discounting V, X, … – kind 
of the more ascriptive symbols).
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The stance needed, philosophically
Reducing the larger philosophical dimensions of maximising 
learning outcomes into two – reasoned conceptual clarity with 
extensively contextualised narrative or rigorously structured logical 
relationships to deconstruct any mathematical context. This must 
be read in the context of mass-scale, extensive quantitative literacy 
versus scaling up school mathematics curricula to support better 
higher education.

The story of Calculus is very illustrative here. It is no less profound 
than the stories of the birth of Calculus at the hands of Newton 
(and Leibnitz) in the later XVII century. It is about the opposing 
philosophical account of how to make the understanding of calculus 
easier and more vibrant.

Nearly a century and a half later, in 1821, Augustin-Louis 
Cauchy’s book, the Cours d’analyse (considered one of the most 
influential mathematics books ever written), offered the most 
expansive definition of limit. Just two decades later, Augustus De 
Morgan authored Differential and Integral Calculus and focused 
on conceptual clarity rather than the best definitions (the book 
famously had a 29-page introduction).

For this reason, we have also appended a uniquely conceptual yet 
rigorous introduction to calculus, differentiation, and integration 
built only on the concept of limit and continuity but not on the 
arithmetical methods that have been crying for reform of calculus 
education for the past 200 years (since the mathematician Cauchy’s 
re-founding calculus on limit).
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Annexure

Mathematisation Case Studies 

Trigonometry and Calculus

Seeing is believing. Experiencing is truth. Let us experience 
‘mathematised Trigonometry and Calculus’.

Pertinently, among the more unique and important features 
of mathematics as a language and a domain of knowledge is that 
it has come to be so abstracted, regourised, and procedured for 
the sake of widest applicability that it is too expansive even for 
mathematicians. We, the authors, are not mathematicians, and 
despite that handicap we assert that of all kinds of researchers 
mathematicians follow the most specific interests (of course, 
that also implies that their contributions are most impactful for 
humanity.) Education of mathematics needs to be revolutionized.

The abstractness of trigonometry is widely acknowledged. John 
G Kemeny, a remarkable mathematician and computer scientist, 
questioned the relevance, stating that a considerable portion of his 
high school trigonometry course was dedicated to the solution of 
oblique triangles. However, he expressed that throughout his highly 
varied career, he never found an excuse to use these techniques 
and questioned the necessity for all high school students to devote 
several weeks to the subject.

On the other hand, calculus education misses out the beauty 
and the beast that it is. In the words of the mathematician Steven 
Strogatz, calculus insists on a world without accidents, where one 
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thing leads logically to another. With the initial conditions and the 
law of motion, calculus allows us to predict the future or, better 
yet, reconstruct the past.

Mathematisation of thinking
Mathematisation of thinking is building natural-language-like 
competence in expressing real or imagined relationships of 
quantities. It would help to know that this mathematisation is best 
raised on high proficiency in the chosen language of academics. For, 
language mediates thinking, and a brain that is already accomplished 
in using abstract objects and constructs – words, syntax, grammar, 
semantics, morphology – is far better equipped to master another 
language. Mathematisation of thinking is to harness mathematics as 
a language to comprehensively and uniquely visualise and express 
situations involving quantities.

Interestingly, the benefits of mathematics as a language are 
well appreciated. But it quite ends there; it is not practised, not 
even among mathematicians. The reason for this divorced state 
of possibility and practice is very illuminating. Natural languages 
are so-called because learning them is simply by participation; just 
being all ears requires registering literal correspondence between the 
words and the objects/feelings they represent. The formal constructs 
of our first natural language – the mother tongue – are for literary 
writing capabilities, not for accomplished communicative writing 
or reading literature in that language.

However, a layer of formal learning is required for ‘non-natural 
languages’, or acquired languages, such as mathematics, art, music, 
dance, ‘theatrics’, games and sports. All these languages are somewhat 
innate, a kind of sense/knowledge, and thus, too personal, and need 
to be framed into a common framework for communication with 
others. For instance, music is so highly structured/framed that it 
is almost universal; good music is pure science (and mathematics). 
Music is all sounds that are pleasant to our brain; all else is noise; 
that is why music is quite universal.
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Mathematics must also be structured to be effective as a means 
of communication. We already know how mathematics has the 
simplest demands and complexities as a language. There is little by 
way of convention in mathematics (for example, the way we write 
numbers draws Cartesian planes), and even the list of standard 
notations is not much. What is the twist in the story of mathematics 
that makes it a 100% precise language (every physical reality has 
only one mathematical expression) and 100% universal? The simple 
answer is what we call concepts and the rigid network and hierarchy 
of concepts. Learning and mastering these concepts needs formal 
education and their application in the routine.

Thus, the mathematisation of thinking boils down to intensively 
exploring the conceptual foundation of the various dimensions 
of mathematics. This implies a significantly toned-down role and 
place of ‘rigorous, calibrated mathematics’ in mathematics as a 
language. To be convincing, we have chosen two dimensions 
of mathematics – (secondary level) Trigonometry and (senior 
secondary level) Calculus – as case studies of conceptual 
exploration of mathematics.

We hope that a good read of the two case studies would see you 
falling in love with triangles and Calculus and imbue you with 
newfound lenses to critically and creatively quantify disparate 
everyday and professional contexts, thereby setting off a new 
relationship with mathematics and the world because the two are 
also the most challenging of mathematics in K-12. The contrast with 
the extreme abstractness of school mathematics should be apparent, 
and the place of ‘process and proof-driven’ scholastic mathematics 
may be respectfully questioned and revisited. We expect that the real 
nature of mathematics will be revealed and mathematics education 
will become the fountainhead of AI-age thinking humans.
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An introduction to 
‘Mathematised Trigonometry’

Trigonometry is placed on the cusp of secondary and higher 
secondary education and is literally the high point of secondary 
geometry, algebra, sets, and functions. It is also the best closure to 
the enigma that is triangles, in terms of the lion’s share of geometry 
curricula up to secondary years. Yet, trigonometry education cannot 
be more recklessly designed and delivered. 

Trigonometry is best introduced and internalised as a function, 
a special relationship between the angles and sides of triangles. 
Understanding trigonometry as a set of functions that dramatically 
simplifies visualisation and verbalisation of the three ‘primary 
trigonometric functions’ – sin(e), cos(ine), and tan(gent) – and 
their multiplicative inverses – sec(ant), cosec(ant), and cot(angent). 

Even better, senior secondary’s nemesis – the inverse trigonometric 
function(s), especially when coupled with calculus – is a delight to 
be introduced as a function. 

To be fair, relations and functions are often out of the 
secondary syllabi, and using these to explore trigonometry 
would not be possible without curricular reorganisation. But that 
reorganisation is anyway an imperative for another reason too – 
knowledge of sets is integral to counting, and quantification. Sets 
must be introduced in the pre-school years and better explored 
in the primary school years.

By the middle school years, interactions among sets could 
easily be studied at the basic level. Relations and functions are the 
operations through which sets interact. Relations and functions are 
the gateway to many mathematical foundations.

Besides, functions play a pivotal role in calculus. The latter would 
not be possible without the use of functions.   
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Mathematised Trigonometry

Triangles, the simplest polygon we come across in everyday life and 
geometry have a wide variety of shapes and properties depending 
on the measure of the angles and the length of the sides. It would be 
hard to think of a ‘standard’ or more common kind of triangle, that 
is, a more common shape of triangles.                 

Triangles of different shapes

On the other hand, when it comes to the other polygons (with four 
or more sides), some shapes are so very common that they can 
be considered ‘standard’ or ‘typical’ polygon shapes. For example, 
parallelograms, squares, rectangles, rhombuses, and kites are the 
most visible four-sided polygons (quadrilaterals). Other kinds 
of quadrilaterals cannot be bracketed into having a standard or 
typical shape.

Square Rectangle Rhombus Trapezoid Kite
Some standard quadrilaterals
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Uncommon quadrilaterals

The standard quadrilateral does not exhibit many variations, for 
example, squares and rectangles vary only with respect to the length 
of the sides. Thus, their shape changes to become bigger or smaller. 
Similarly, depending upon the length of the radius, a circle changes 
to become bigger or smaller only. 

Size of standard quadrilaterals and circles differ in length, not in shape

The same is true for other kinds of polygons, such as pentagons, 
octagons, decagons, etc. In polygons, the standard form has sides 
with equal length. Such polygons are called regular polygons. 
There is no difference in the shape of the different versions of these 
standard (regular in geometry) polygons with the same number of 
sides. All pentagons, hexagons, and decagons, for example, are just 
bigger or smaller sizes of the same shape.

Size of standard polygons differ in length, not in shape

Triangles are unique polygons. They have innumerable variations. 
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Welcome to the diversity and the beauty that is triangle
The fact that triangles are polygons with the least number of sides 
and come in very different shapes is a boon in geometrical analysis. 
All kinds of polygons (four sides or more – whether regular or 
irregular) are geometrically studied by visualising and decomposing 
them into multiple interconnected triangles– their fundamental 
building blocks.  

This also reinforces why we must study triangles in all their 
diversity, and they better not be reduced to any common forms for 
their geometrical understanding. 

Polygons are made up of multiple triangles

The root of trigonometry
Expectedly, there is a branch of mathematics that is dedicated to 
the study of triangles. It focuses on how the measure of angles and 
length of sides help compose infinitely unique triangles. To that 
end, it studies the relationships between the length of sides and the 
measure of angles of triangles.

The saving grace
Thankfully, despite the apparent diversity in the shapes of triangles, 
their properties reveal a remarkable simplicity when it comes to 
discovering patterns in the relationships between angle measures 
and side lengths. 

In triangles, a significant and indisputable relationship exists 
between the measures of angles and the lengths of the sides opposite 
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to them. This fundamental connection acts as a saviour when 
tackling geometric challenges. 	

Biggest angle

Largest side80°A

B

C Biggest
angle

Largest  
side

100°

A
B

C

Biggest
angle

Largest  
side

75°
A

B

C

55°

45°

40° 40°
40°

65°

Angle opposite to the largest side in a triangle is always biggest and vice-versa

And even this relationship is specific – a given angle measure will 
not have a fixed length of side, it is limited to the fact that any 
increase in an angle measure will lead to an increase in the length of 
the opposite side (whatever it is). 

As the measure of ∠A increases, so does the increase in the 
measure of the length BC which lies opposite to ∠A. 

A

B

120°

C

A

B

30°

C

A 40°

B

C

With the increase in the measure of the angle, length of its opposite side 
increases

There is another face of the angle and opposite side relationship – for 
the same angle, the opposite side could increase or decrease in length! 
Does it violate the nature of the aforementioned relationship? No. In 
fact, the finer, universal aspect of the angle and side relationship is 
in the form of angles and ratio of sides, rather than an angle and just 
a side. The other two sides of a triangle also change if the opposite 
side to an angle is changed. Thus, we would henceforth relate angles 
to sides. It must be emphasised that this is highly intuitive, practical, 
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and visual correlation of angles and sides, it is not formal, but this is 
logically rooted and as ‘mathematical’ as necessary. 

A

B

C

A

B

C

A

B

C

Same measure angle with different lengths of the opposite side has different 
lengths of the other sides 

Indeed, in triangles the three sides and the three angles need to be 
studied extensively to understand its different facets. 

Welcome to trigonometry, the domain of mathematics that helps 
us to measure all the six measurable dimensions of triangles – the 
three angles and the three sides.

A note on learning about Trigonometry
The documented roots of trigonometry can be traced back nearly 
2500 years ago, and it likely has an even longer history that dates 
back further. Trigonometry emerged from astronomy in ancient 
civilizations as a practical tool for studying celestial objects. 

The geometry of celestial objects is 3-dimensional, not planar 
(2-dimensional, or what is called Euclidean geometry), and thus, 
the corresponding trigonometry is spherically oriented, not 
planar trigonometry. 

At the best of K-12 geometry, spherical geometry (such as the 
shortest distance between two points on the surface of the earth such 
as the ‘straight flight path’ of migratory birds is not straight, it is an arc 
on the spherical surface of the earth.) is not part of curricula. And it 
need not be, planar geometry itself is a huge part of our lives, science 
and engineering too.

To the point, the foundational concepts in K-12 Trigonometry 
are made unduly complex by using spherical geometry for just 
studying planar trigonometry. For example, trigonometry was 
founded with ‘trigonometric functions’ in terms of arcs/chords of 
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circles, but it does not mean K-12 education has to use the same 
foundations. As we will experience soon, functions (which are 
central to mathematics in all that is the real world) are a much better 
way to understand trigonometry.

Thus, we will explore the foundations of trigonometry from an 
easily visualisable and logically threaded narrative using functions.

The K-12 trigonometry also makes one more simplification – 
we study trigonometry for right-angled triangles only; this makes 
learning about sides and angles easier because the possible variations 
in the shape of triangles are dramatically simplified (still infinite in 
numbers). The following pictures show how there are only two kinds 
of shape variations in a right-angled triangle.

A B

C

A B

C

A B

C

Hypotenuse increases with the increase in height of a right triangle with same 
base length

A B

C

A B

C

A B

C

Hypotenuse increases with the increase in base length of a right triangle with 
same height

Remarkably, this simplification is similar to how regular polygons 
and circles are simpler shapes. 
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And the best news – there is no compromise in applying 
trigonometry as all triangles can be seen as composed of two right-
angled triangles.

C

B

D

I

II

A

C

B

D

I

II

A

C

BD

I II

A

Every triangle consists of two right-triangles

Trigonometry
There is a very interesting fact about all the angles and all the sides of 
a triangle. 

We cannot find the sides of the triangles even if we know all the 
angles – the same-angled triangles can have any-sized sides.

C

BA

C

BA

C

BA

Triangles with equal angles but varying sizes

But the other side of the question is doable – we can find the angles 
of a triangle whose three sides are known. For example, if three lines 
of any length are given, then we can make a definite right-angled 
triangle with these three lines.
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A B

C

Right-angled triangle can be created using three lines of any length

Despite the fact mentioned above, the three possible scenarios with 
respect to triangles are - finding the sides when all the angles are 
known, finding the angles when all the sides are known, and when a 
mix of sides and angles are known and the unknown sides and angles 
are to be computed.

First scenario 
We well know that when we know the measure of all three angles 
of a triangle we cannot make one specific triangle, there would be 
infinite combinations of valid three sides. However, the ratio of sides 
in such disparate triangles would be the same, because the angles in 
such triangles have the same measure (recall, angles and ratio of sides 
is the more universal relationship between angles and sides.) Thus, 
in triangles where we know the angles, we use the given angles to 
find the ratio of sides, the exact length of the sides could be any as 
long as the ratio of the sides is maintained for the given angles. When 
the three angles of a triangle are known, the closest we can come to 
knowing about sides is their ratio.

Let us closely observe the following triangles with known angles, 
such as 30˚, 60˚, and 90˚.	

60°

30°
A B

C
60°

30°
A B

C 60°

30°
A B

C

Triangles of varying sizes with angles 30˚, 60˚, and 90˚

Visibly, the one truth about the sides is that the ratio of any two sides 
of one triangle is equal to the ratio of the corresponding sides of other 

triangles. For example, 
AC
AB

 in all three triangles would be similar. 
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This relationship of a given angle and the ratio of sides in all triangles 
(made of the given set of angles) is formalised using the mathematical 
operation called function.

When the three angles of a triangle are known, the closest we can 
come to knowing about sides is their ratio.  

Mathematics is a beautiful and powerful knowledge also because 
it invented functions. ‘FUNCTIONS’ take some input quantities and 
‘process’ them to get an output quantity. They convert one kind of 
quantity into another. We would use functions which will convert 
angles into ratio of sides. 

Mostly, functions are explicit and quantitative relationships 
between two or more quantities. A function defines how one quantity 
(the dependent variable) depends on one or more other quantities 
(the independent variables).

One of the distinctive features of a relationship that is a function 
is that for every set of input(s), there is only one and only one 
corresponding output quantity, and it will always be the same for 
those inputs. In other words, a function assigns a definite output 
value to each (set of) input value(s).

1 x

2
y

3

r4

Input Output

A function is a relation that assigns to each input exactly one output

The functions that relate the measures of triangles (which are only 
of two kinds – angles and sides) are called trigonometric functions; 
recall, trigonometry is the study of the relationships between the 
measure of angles and length of sides of triangles. Importantly, the 
trigonometric functions are applicable to all kinds of triangles, not 
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just to the right triangles because all kinds of triangles bear a direct 
relationship between their angles and sides.   

We are focusing only on the trigonometric functions applied to the 
angles of right triangles because it is simpler to study right triangles. 
Also, all non-right triangles could be seen and studied as two right-
angled triangles. That’s why, the school syllabus focuses on the 
trigonometry and trigonometric functions of right triangles.

Trigonometric functions take angles as inputs and produce the 
ratio of relevant sides as output. We have already explored how angles 
of triangles bear a direct relationship with the ratio of sides, rather 
than just the length of one side.   

The term ‘trigonometric functions’ is indeed a more encompassing 
and intuitive name for these mathematical functions, especially when 
compared to referring to them as ‘trigonometric ratios’ (the more 
common name in school textbooks).

However, there is a natural query arises – what if the ratio of sides 
is known and the relevant angle needs to be determined?

We can use the inverse trigonometric functions to find the angle 
when we know the ratio of the sides. 

Inverse trigonometric functions take the ratio of the length of sides 
of the triangle as their input and produce the relevant measure of the 
angle of the triangle.  

Let us start with finding out how many ratios of sides exist in a 
right-angle triangle. Consider the following right triangle. 

Perpendicular 
(P)

C

BA

Hypotenuse 
(H)

Base 
(B)

θ

A right-angled triangle ABC

There are six possible ratios of sides in the triangle –
P B P H H B, , , , ,
H H B P B P
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We need six different functions, which when applied to the angles of 
the triangle give us six ratios as their outcomes. 

It is easy to appreciate that in all right triangles, one angle is always 
90˚, and any two right triangles are different only in terms of the other 
two angles (θ, ɸ in the given figure). Thus, all the ratios of the length 
of sides of a triangle are linked to a distinct function with respect to 
an angle (θ or ɸ).

Here is a table of six trigonometric functions of angle θ.  

Assumed 
Function 

Name
Ratio of sides

Trigonometric 
Function 

Name

Trigonometric 
Function (of 

angle θ) 
First 

Function 
of angle θ

∠θSide opposite to
Hypotenuse of the triangle

Sine Function 
of angle θ sin θ = P

H

Second 
Function 
of angle θ

∠θSide adjacent to
Hypotenuse of the triangle

Cosine 
Function of 

angle θ

cos θ = B
H

Third 
Function 
of angle θ

∠θ
∠θ

Side opposite to
Side adjacent to

Tangent 
Function of 

angle θ

tan θ = P
B

Fourth 
Function 
of angle θ ∠θ

Hypotenuse of the triangle
Side opposite to

Cosecant 
Function of 

angle θ

cosec θ = H
P

Fifth 
Function 
of angle θ ∠θ

Hypotenuse of the triangle
Side adjacent to

Secant 
Function of 

angle θ

sec θ = H
B

Sixth 
Function 
of angle θ

∠θ
∠θ

Side adjacent to
Side opposite to

Cotangent 
Function of 

angle θ

cot θ = B
P

Similarly, we can link all the six ratios of length of the sides to the six 
trigonometric functions of angle ɸ. 

The multiplicative inverse functions of sine, cosine and tangent 
The six trigonometric functions of angle (θ or ɸ) have their inter-
relationship in terms of the ratio of the sides. 
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The cosecant function of angle θ is the reciprocal of the sine function 
of angle θ. Similarly, the secant and cotangent functions of angle θ are 
reciprocal of the cosine and tangent functions of angle θ respectively.

Thus, the cosecant, secant, and cotangent are not the inverse 
functions of the sine, cosine, and tangent. They are the multiplicative 
inverse functions.

Multiplicative Inverse 
Functions In terms of Sides Result

1cos ec
sin

θ =
θ  

H 1
PP
H

= cos ec sin 1θ × θ =

1s ec
cos

θ =
θ

H 1
BB
H

= s ec cos 1θ × θ =

1cot
tan

θ =
θ

B 1
PP
B

= cot tan 1θ × θ =

Second scenario 
All angles can be found if the lengths of all sides are known. But how 
can we do it mathematically without actually measuring the angles? 
We can use the inverse trigonometric functions to find the measure 
of angles when we know the ratio of the length of sides. 

Inverse trigonometric functions take the ratio of the length of sides 
of the triangle as their input and produce the relevant measure of the 
angle of the triangle.

The inverse of the sine, cosine, and tangent functions is written as 
sin-1, cos-1, tan-1. 
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Trigonometric Functions 
of an Angle is Ratio of Sides

Inverse Trigonometric Functions 
of Ratio of Sides is an Angle

sin θ = P
H

1 Psin
H

−   = θ 
 

cos θ = B
H

1 Bcos
H

−   = θ 
 

tan θ = P
B

1 Ptan
B

−   = θ 
 

cosec θ = H
P

1 Hcos ec
P

−   = θ 
 

sec θ = H
B

1 Hsec
B

−   = θ 
 

cot θ = B
P

1 Bcot
P

−   = θ 
 

Trigonometry itself is quite a big deal, and inverse trigonometric 
functions simply scare us all, even in Grades XI-XII.

But, as we see above, inverse trigonometric functions are just 
another way of expressing the ratio of sides! Of course, the inverse 
also simply asserts that just like all functions have an inverse, 
trigonometric functions also have the inverse.

Angles
Ratio

of
sides

Inverse Trigonometric functions

Trigonometric functions

Trigonometric functions – Angles gives ratio of sides; 
Inverse trigonometric functions – Ratio of sides give angles
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An illustration of trigonometric functions and inverse functions 
What is the measure of L?

65

35

L
?

       

Opposite side 35Tan(L) = =
Adjacent side 65

Strictly speaking, we have to find the measure of an angle given 
the ratio of the length of sides. The trigonometric functions – sin, 
cos, and tan – give us the ratio of the length of sides, given one of 
the acute angles of right triangles. But the need of the question 
is just the opposite – we have to find the angle given the ratio of 
the sides. This is a basic and classical case of using the inverse of a 
function – using a function to do the opposite of what it is made 
to do! Thus, if we use the inverse of the tan function, we will get to 
use it to find the angle for a given ratio of sides! We use an inverse 
trigonometric function here!

–∠ 1 35L = tan
65

Third scenario
In case the known is a mix of angles and sides, for example, two 
sides and one angle of a triangle are known, the computations do not 
change except for more arithmetical steps. The above two scenarios 
still hold true and adequate.

Summing up 
The sine, cosine, and tangent (abbreviated as sin, cos, and tan) are 
three primary trigonometric functions, which relate the angle of a 
right-angled triangle to the ratios of two sides’ length.

The sec, cosec and cot are the multiplicative inverse of the primary 
functions, respectively; what it implies is that sec, cosec, and cot are 
the arithmetical reciprocals of their respective primary function's 
ratios of sides. The inverse trigonometric functions do the exact 
opposite of the functions – they take the ratio of sides as input and 
give the measure of the corresponding angle.
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An introduction to 
‘Mathematised Calculus’

Calculus is real-world mathematics, far more than counting, 
numbers, arithmetic, (Euclidian) geometry, algebra, etc.; do not let 
your mind revolt against the statement, for example, when we count 
four apples, it does not mean the weight of the four apples are exactly 
alike (the weight of any one apple is approximate for the three).  It 
is the most intuitive of all mathematical objects and concepts. No 
child can be struggling with visualising and verbalising calculus. 
Calculus education is all wrong; for the best of ‘K-12 toppers’, it 
starts and ends with limit and continuity. 

A highly practical, real-world, and intuitive understanding 
of calculus is what we call ‘mathematised calculus,’ and that 
is what should be the content of calculus education in school 
years. Pertinently, it also best handholds us through the methods 
of calculus – mathematised calculus is the usual arithmetic, 
algebra, and trigonometry once past the foundational ideas and 
principles of calculus.

At its heart, calculus is about a world of derived quantities, the 
derivatives. There are many physical, real, critical entities, such 
as speed (and velocity), acceleration, electric current, power, 
electromagnetic force (comes alive due to magnetic flux), chemical 
product formation cycle, marginal cost, and utility, etc. that are not 
directly/physically measurable. For example, power is derived out 
of energy/work capacity and current is derived out of the amount of 
electric charge flow in a circuit in a given time; more importantly, 
both power and current are ‘independently’ meaningful and 
important quantities.



148     Mathematised Calculus 

Expectedly, calculus is also about the opposite – the anti-derivative 
(integral), undoing a derivation process to get the quantity that was 
used to get the derivative. For example, the average velocity over 
a period is the anti-derivative of acceleration (itself a derivative of 
velocity) and volume is the anti-derivative of area. Similarly, derived 
quantities could be used to derive another quantity – the double 
derivative. For example, acceleration is the derivative of velocity, the 
latter is the derivative of distance travelled (over a period.)  

Derived quantities (derivatives) originate in change, detail the change.  
All the aforementioned derived quantities, and all the others, have 
one thing in common – they are the rate of change of a ‘changing 
quantity’! For a (continuously) changing object/situation, its rate of 
change is the real deal, the determinant of many things that matter 
about that change. For example, speed (at various instants of time) 
is the rate of change of distance traversed and determines the impact 
of accidents, the possibility of skidding at a sharp turn, etc. 

Calculus is about measuring change; to be precise, measuring 
the change as it occurs – the change at different instants in relative 
terms (with respect to time or any variable quantity) to make more 
sense of the change. For example, knowing the amount of distance 
travelled is of little value until it is relatable to the time period of 
that travel. 

Anti-derivative describes the effect of change, not details of 
change. It is the opposite – not the change at any instant, but the 
cumulative of the instant changes over a period of time (or any 
other variable quantity.) It is like a sum of the different ‘instant, 
or infinitesimal’ values.

What is the nature of changing values? Relevantly, for a changing 
quantity, an (infinite) series of the actual values of the changed 
quantities would need to be measured to understand it. But, a 
series of such numbers will be mathematically unwieldy and yet 
incomplete with respect to recording the changing quantities (we 
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will soon exemplify this.) Changing quantities are precisely and 
comprehensively expressed using mathematical entities called 
functions, without explicitly listing every individual value. Briefly, 
functions are like input-output converters, quantifying a certain set 
of output for a set of input quantities. 

Every ‘uniquely varying quantity’ is a ‘unique function’. Every 
changing quantity is expressed as a function. Thus, we find derivative 
and anti-derivative of functions. 

Functions – The mathematical innovation to capture all instantaneous 
values  
Imagine a bike whose speed at every one second interval is as under:

Time 
(sec) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Speed 
(m/sec) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

There are three obvious challenges with this instant values of 
motion: 
•	 No pattern is directly visualisable (we need to graph it to really 

see the pattern in motion).
•	 There is no way to know the speed of the bike at any time other 

than given, for example, the speed of the bike at 3.5 seconds.
•	 To know more about the motion, tedious mathematical 

operations would be needed; for example, to know the nature 
of the acceleration of the bike, the acceleration values have to be 
computed for all 14 pairs of speed (start to the first second, first 
second to the second second, etc.).

However, we can overcome all the aforementioned challenges if we 
‘summarise’ the speed and time relationship through a function. 
And that function, in this case, is ‘speed = time’, s(t) = t (speed 
as a function of time is such that its magnitude is same as the 
magnitude of time itself, at all times between the start and the 
fourteenth second); it is more commonly written as f(x) = x.
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y

s(t)

t

x0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Speed-time graph

The entire world of mathematical measurement of change is 
founded on functions. The function gives the (infinite) series of 
instantaneous values.

When dealing with continuous quantities, functions are the 
primary mathematical tool for their representation because they 
can describe how these quantities change continuously. Continuous 
functions provide a powerful framework for modelling, analysing, 
and making predictions in various fields like engineering, science, 
business, etc.

Typically, situations quantifiable by counting represent discrete 
quantities, and those that need to be measured, or derived, and 
can take on an infinite number of values within a given range, are 
the continuous quantities. So, distance and time are continuous 
quantities whereas the number of students in a classroom is a 
discrete quantity.

However, functions can also be used for discrete quantification. 
Planning and controlling the efficiency of the production of limited-
size batches of something is an example of creating functions for each 
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discrete situation. For example, the number of batches produced, the 
number of items in each batch, the number of machines used, and 
the number of workers are typically whole numbers. Continuous 
functions need real numbers to be quantified.

How do we compute the rate of change to find derivatives?  The rate 
of change of a function at an instant, or condition, is the slope of its 
graph at that instant. Let us not forget that the rate of change varies 
in a changing quantity, thus, we think in terms of the rate at a point 
on the graph. 

Q
R

P

y

x0 x

f(x)

The slope of the tangent PR at point Q is the rate of change of the 
curve/function at Q

Welcome the idea of limit! Using the idea of limit, we make the 
slope of the tangent at a point becomes the best approximate value 
of the slope of the function at that particular point. Limit is the 
‘science’ of infinitesimal quantities, a conceptual breakthrough in 
mathematics that laid the foundation of calculus – limit allows us 
to consider an infinitesimal part of the graph around a point that 
almost overlaps with a straight line tangent at that point. Recall, 
the slope of a tangent around a point is obtained by the simple 
rate formula. 

Consider a horizontal tangent at point C and points C' and C'' 
close to C. 
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CC' C''

CC' C''

y

x0 x

f(x)

The figure on the right is an ‘infinitely enlarged’ view of an infinitesimal part of the 
left curve 

As the points C' and C'' get closer and closer to the point of interest 
C, the line becomes smaller and smaller while the slope of the line 
changes. When the points C', C, and C'' are closest possible, the 
line becomes a tangent and the steepness (slope) of this line gives 
the best approximate value of the slope of the curve at the point of 
interest (point C). Another way to look at it is as follows.

Guaranteeing that limit does not go wrong! The concept of 
continuity complements the advantages of limit, by ensuring that 
the chosen infinitesimal part of the graph around the point to find 
the rate of change does actually represent the slope of the function 
at that point. Any sharp variation in the slope of the graph at that 
point is detected as a lack of continuity of the same slope at that 
point. In such situations, the limit of the function is said to not exist 
at that point, i.e., the slopes of the function just before and after the 
point are not the same. 

What is the greatest deal about calculus? The derivative and anti-
derivative of a function are the same for all the valid inputs for the 
function (the domain of the function). For example, the derivative 
of f(x) = x2 is 2x, and it implies that the derivative at the point x = 2 
is 4, and the derivative at the point x = 8 is 16. 

There is more – solving calculus questions does boil down 
to knowing or computing the derivative or anti-derivative of the 
individual terms in the question and then following the usual 
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simplification of the expression much like solving algebraic or 
trigonometric questions. 

We are ready to consolidate this introduction of derivative, anti-
derivative, limit and continuity as we read ahead the ‘mathematised 
calculus’ chapter.

A note on calculus and 2023!
The idea, joy, and applications get completely lost in calculus 
education due to its singular and rigorous rooting in the idea and 
computations, limit and continuity. 2023 is an -interesting milestone 
in calculus, and its education. In 1823, the French mathematician, 
Augustin-Louis Cauchy presented the text Résumé des leçons sur 
le calcul infinitesimal (‘Summary of Lectures on the Infinitesimal 
Calculus,’), his first book devoted to calculus, originally written 
to benefit his École Polytechnique students in Paris. The book is 
a remarkable work of conceptual vision and laid the foundations 
of the rigourised, formalised, particularised, and proceduralised 
foundations, concepts, and practice of using calculus. 

The book had a sweeping effect on mathematics as a whole, and 
it massively guided and accelerated the development of ‘abstracted 
and methodised mathematics.’ However, it was meant to popularise 
and strengthen the correct applications of calculus among engineers 
and scientists. It was not meant to be used in introductory calculus 
education in schools, but that is exactly what happened, and an 
intuitive understanding of calculus was lost.
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Change is the only constant 
Change is an inherent and unchanging reality of our world.  Change 
refers to any alteration, modification, or transformation in the 
conditions of an object or situation (system). It can occur gradually 
and steadily over time without distinct breaks or interruptions 
or can be abrupt and sudden. Erosion and weathering of rocks, 
adaptation, and evolution of living things are changes that are 
very slow while volcanic eruption, earthquake, and landslide are 
examples of sudden changes. Continents, which seem fixed and 
immovable, are actually in continuous motion – a few centimetres 
per year. Middle school physics is built on the notion of constant 
acceleration (recall, F = m.a), but constant acceleration is a myth 
(even in deep space travel). 

Let us not be deceived by many things around us that seem stable 
or unchanging, it is only a simplification of reality to make it easier 
to understand and compute at a preliminary, best approximate, and 
conceptually correct level. For instance, when we talk of averages, 
such as average speed over a 5-hour journey, we do not mean that 
the average speed was even momentarily an actual speed, it is just 
one good approximation of a range around which the speed lay 
in those 5 hours. The actual speed at different instants was not a 
constant that the average speed is computed to be.

The undeniable truth is that everything is in a continuous state of 
flux, change is the best hallmark of how our world is. To precisely and 
comprehensively understand our world, we need to explain and also 
measure the way change becomes evident in all things around us.
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To understand the world, we need to understand the change 
Fortunately, our world can be visibly categorised into two broad 
kinds of objects –
1.	 Objects that are stationary (buildings, trees, books, …)
2.	 Objects that move, or are in motion (motion may be the 

most ancient human fascination, starting with the motion of 
celestial objects)

Importantly, it is natural to think of change in stationary objects 
only through the lens of change in their position. But this would be 
missing the point about the change in stationary objects – change 
in such objects may also be in their weight, dimensional measures, 
the composition of matter in them, and others (to name just the 
quantitative descriptors). 

Thus, the first characteristic of a change in an object is any kind 
of measurable difference in it between two instants of time, or 
any other conditions (such as in response to a change in pressure, 
temperature, etc.)

One of the special measurable differences of this kind is also the 
change in the dimensional measures – surface area, and volume 
(space occupied by a thing) of objects.  For instance, imagine a 
rectangular packet of tea leaves tearing apart and a heap of the same 
tea leaves forming on the ground; the surface area of the heap and 
the packet would have changed (not the volume). And the usual 
geometric computations would not help in finding the surface area 
of the heap. 

Similar computational challenges abound when attempting to 
find surface areas and the volume of ‘curved objects’, such as the 
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following; (Euclidian) geometry does not work for curved surfaces 
and objects.

   
   
As to things that move, or are in motion, it is intuitive to think of 
the motion itself as representing change. Indeed, it is – change of 
position/place of the object in motion – but that is what motion 
is inherently about; there is no motion unless and until there is a 
change of position involved in it. However, a steady motion wherein 
the distance travelled, the time taken for that travel, and the direction 
are the same (if the direction is also relevant) over a time period, the 
motion would not be called to be changing. The motion would be 
said to be changing only when the direction and/or the distance 
travelled over the same time period changes.

Changing motion is literally the norm across the universe. 
All celestial bodies move along a curved path, may it be circular, 
elliptical or parabolic, hyperbolic, etc.; elliptical movements are the 
most common ones. This implies that the direction of motion of 
the celestial bodies constantly changes, and also implies that the 
distance traversed in fixed time intervals also changes constantly 
(in elliptical and parabolic motions).   

Thus, change occurs IF a relationship between two, or more 
quantities is NOT steady; for example, if a body is moving in a way 
that the distance travelled by it over periods of time is different, 
then the motion is said to be changing. 

Happily, graphs of the relationship between quantities are a very 
easy way to identify existence as well as the nature of change between 
the quantities. Here are a few examples of how graphs can show if 
change exists in a relationship, and how does the change look like:
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Interestingly, change can be registered only when it can be objectively 
measured quantitatively (for example, change in numerical 
values, 30°C to 45°C) or qualitatively (for example, change in 
colour or texture). However, change as a subject of mathematical 
interest implies changes occur when quantifiable relationships 
are not steady.  

Quantifying change – A series of instant values 
It is very interesting to realise that the biggest and quickest of 
changes are also in ‘slow motion’, steady, gradual, or what may be 
called ‘a series of unique instantaneous values’. Time is amazingly 
divisible, and a change that appears in just one-tenth of a second 
is also slow and steady when looked at time frames that are one-
hundredth of a second. The first one-hundredth second of the start 
of that change will register some kind of quantitative difference, the 
second one-hundredth second will bring in another quantitative 
difference (that will add to the quantitative difference of the first 
one-hundredth second), and so on. 

The amount of change that is measured between the zeroth 
second to the one-hundredth second is the amount of change in 
the first one-hundredth second, and the amount of change between 
the end of the first one-hundredth second to the end of the second 
one-hundredth second is the amount of change in the second one-
hundredth second. 

At some slicing of time, all changes are just a series of many 
instantaneous values of change (all adding up together). Thus, to 
know a change, we need to study it as a series of instantaneous 
changes; the instants depend on the pace of the change, it could be 
the amount of change per minute, per second, per millisecond, etc.      

However, the idea of instant has very interesting implications for 
actually measuring change. An instant means now and it is almost 
in some changes, the magnitudes between the beginning and end 
of observation could take an infinite number of possible values. 
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Such changes could be considered as an accumulation of an infinite 
number of infinitesimal or ‘infinitely small’ changes, occurring at 
each moment or instant. Such changes are so small that the change 
occurring between two precise ‘moments’ is nearly imperceptible. 
For example, the change in height of a child between his first and 
second birthday. 

When we consider all the infinitesimal changes at all instants 
together, it creates the impression of an unbroken, continuous change 
in a system and gives a complete understanding of the behaviour 
of the change. When graphed, these changes are represented as a 
continuous line or curve.

To understand the events that are an accumulation of infinitesimal 
changes, and can change at any point and in any magnitude requires 
a language or framework that can effectively describe these dynamic 
and evolving systems. This mathematical language that represents 
continuous changes is a function. 

Function – Capturing realities in mathematical expressions
Functions are mathematically expressed relationships of real-world 
situations, and they are such that for each change in any of the 
variables in the relationship, however small, a change is observed in 
some other variable of the relationship.

Continuous functions are a fundamental tool for understanding 
and making predictions about the behaviour of continuously 
changing systems in a wide range of fields. They enable accurate 
modelling, analysis, and optimization, making them essential for 
addressing complex and real-world problems.

To know more about continuous functions, refer to the Note 3 at 
the end of the chapter.

One of the real-world situations expressed as a function is the 
relationship between distance (D) and time (t) where both are 
variables and distance is dependent on time, i.e., D = f(t). Here, 
‘D is a function of variable t’ means that there is a mathematical 
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relationship that describes how D changes or depends on changes 
in t. So, the function ‘f ’ takes the value of ‘t’ as input and produces 
the corresponding value of ‘D’ as output.  There is a unique value of 
D for every value of variable t.

Various mathematical functions define real-world situations, 
such as f(x) = x2 is a quadratic function that represents a parabolic 
path, f(x) = x2 + 4 is a quadratic function with a vertical shift such as 
energy levels or distances with a constant offset, f(x) = 1

x  is a rational 

function that describes situations where one quantity is inversely 
proportional to another, f(x) = sin x is a trigonometric function 
representing a sine wave that models oscillatory behaviour, etc. It is 
written in a way that one quantity is seen as varying, or dependent 
on the way other quantity (independent) vary. For example, in the 
function, y = sin x, where x is the independent quantity and as x 
varies the value of y (dependent quantity) varies. The notation 
commonly used to represent to describe functions is either y or f(x).

Functions as input and output processors
Input is a quantity that is ‘entered’ into a function. The quantity 
should be such that it is valid for the function, for example, the 
function f(x) = x  is only valid for positive values of x. And, after 
processing, f(x) returns a value, the output. For example, if x = 4 
then the output f(x) is +2 and –2. 
The possible set of valid values of the ‘input,’ the independent 
variable, is called the domain of the function. The processed set of 
values of the output, the dependent variable, is called the range of 
the function. 

Finite set of functions
Function f(x) = x2 represents a parabolic function and function    
g(x) = ax + b represents a straight-line, both being algebraic 
functions. However, h(x) = sin x, expresses a sinusoidal wave and is a 
trigonometric non-algebraic function. We can categorise functions 
more elaborately as follows:
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Algebraic

Trigonometric
f(x)=sin (x + 5)

Exponential
f(x) = 4x

f(x) = ex

Logarithmic
f(x) = log x

Composite

Non-Algebraic

Functions

Polynomial
f(x) = 

x5 + x4 + 2x2 – 5

Rational Power 
f(x) = x5−

−
9x 5f(x) =
2x 1 3f(x) = x

 
 
  

 
 

2x + 3
7x + 13x + 1f(x) =

3x + 5

Different categories of functions

Instantaneous value of a function
Instantaneous value is essentially the value of the function at a specific 
point in time or space, taken at an infinitesimally small moment. 
For modelling and analysing various natural phenomena and real-
world systems, we need to quantify the change in instantaneous 
values of the function. 

The challenge in computing change in instantaneous values
The challenge in finding the change in instantaneous values or 
rate of something is the measurability of changes at that particular 
‘instant, or point/condition (for example, measuring distance 
travelled at an instant, i.e., measuring the distance covered for a 
duration that is nearly zero). The divisor in such computation of 
rate is nearly zero (we call these nearly zero quantities ‘infinitesimal’, 
which means infinitely small). Mathematically, such quantities/
numbers can be visualised but any attempt to physically measure 
such changes is near impossible; imagine measuring the distance 
travelled by car in 0.001 seconds (0.001 seconds being the time 
assumed to represent ‘an instant’). 

Thus, there are three challenges which we face while computing the 
change in instantaneous value or rate of something:

•	 The physical challenge to precisely measure a small quantity 
within a short time frame.

•	 The computational challenge in which the divisor is almost zero.
•	 The conceptual challenge that such small quantities do exist.
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Solving the physical challenge of instantaneous values
Physically, it is impossible to correctly measure a quantity which is 
small in magnitude for a small measurement window. This physical 
challenge is resolved by using the idea of an indirect quantity, a 
derived quantity. 

A derived quantity is a new, special quantity derived from another 
quantity (primary quantity). It is the quantification of some new 
aspect of a change in primary quantity. It is not a directly measurable 
quantity. It can only be computed using primary quantities.

Here are some examples of the derived quantities – power is the 
quantity derived from the primary quantity energy/work; force is 
derived from momentum; electric current is derived from electric 
charge; and electromagnetic force is derived from flux.

The derived quantity is called the derivative of the primary 
quantity out of which it is created.

Derived quantities out of function
Functions represent the world of relationships among quantities, 
and they are also the source of deriving new quantities or 
information from the primary quantities. This derived quantity or 
the new function obtained from the primary or original function is 
the derivative of that function. 

The derivative of a function is the mathematical operation 
that works on a function to ‘derive’ indirect meaning(s) from the 
function. The primary meaning of a function lies in the relationships 
it represents between quantities; for instance, interest amount is the 
direct meaning derived out of the function that relates interest earned 
on a principal amount deposited in a bank for a time. From the 
derivative of this function, we can obtain indirect information, such 
as the instantaneous rate at which the interest is accumulating etc. 

Derivative quantifies some new aspect of a changing quantity, 
for example, when we know the relationship between time and 
distance traversed by an object in motion, we can derive the speed 
and acceleration of the object in motion. The derivative represents 
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the rate of change of distance (the ‘something else’) with respect 
to time. Evaluating the derivative at a specific instant gives us the 
instantaneous speed (the ‘something’) of the object at that moment. 
To be precise derivative gives a very specific new knowledge about 
something in change – the instantaneous value of ‘something’ with 
respect to the change in ‘something else’. 

The conceptualisation of the derivative of a function can be 
visualised as detailed hereunder:
•	 Something is continuously changing (slow, fast, regular or 

irregular …); for example, a car in motion continuously changes 
its position. It can change its position at a fast pace when on a 
highway or at a slow pace when in a traffic jam. Whatever the 
case is, it is continuously changing its position.

•	 The change in position is measured by a (physically measurable) 
quantity. Distance is that quantity which measures the change in 
position of any object in motion.

•	 The quantity that reflects the change in motion is distance. It 
indicates the change happening for any moving object. 

•	 The rate of change of that quantity could also be changing. The 
change in distance in the various units of time could also be a 
variable, changing; for example, more distance is traversed in a 
certain period, as compared to an equal another period. 

•	 The instantaneous value of the rate of change represents 
‘something else’ which is another quantity related to the original 
quantity being measured. The rate of change of distance with 
respect to time represents speed, which may also change.

•	 The value of ‘something else’ is the value derived out of another 
quantity. Speed, which is the rate of change of distance with 
respect to time, is derived from distance.

•	 The derived quantity is called a derivative. Speed is the derivative 
of distance.

•	 The derived quantity is not a direct/primary measurable 
observation. Speed cannot be directly measured; in the way 
distance and time are measured. 
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•	 The derived quantity changes in tandem with the change in rate 
of change of the primary quantity. As the distance (which is the 
primary quantity here) varies over the different time periods of 
motion, the speed (which is the derived quantity out of distance) 
also varies.

•	 Theoretically, a derived quantity is also a function which can 
change with respect to any other quantity. It must be possible 
for the derived quantities to derive another quantity. The rate 
of change of velocity/speed is acceleration. Acceleration is thus 
derived out of velocity, which is in itself a derived quantity out 
of the changing distance.

Mathematical expressions using derivatives (Differential equations)
Recall that algebraic expressions are combinations of constants and 
variables that are put together using mathematical symbols, and 
algebraic equations are expressions that are set equal to zero. It is 
interesting to think that equations can also have expressions that 
incorporate changing conditions quantified through the rate of 
change. Such expressions are common, we mathematically express 
them every day and when used under scientific conditions, for now, 
they are called derivative equations or differential equations.

Wherever there are changing quantities in the ‘equation’ of a 
thing, the situation is mathematically expressed as differential 
equations. These equations can be used to configure everyday life 
to rocket science.
Refer to Note 4 to learn more about the differential equations.  

Anti-derivative of function 
As the name suggests, it is mathematically the opposite of the 
idea and the operation of the derivative. Let us construct the 
understanding of anti-derivative – one dimension at a time, out of 
the definition of derivative. 

We know that a derivative is a function that gets created from 
another function. Thus, the anti-derivative must also be a function 
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created by another function; (both ‘input and output’ of the 
derivative is a function, so the reverse view of derivative will also be 
‘input and output’ as functions). For example, the function of speed 
gives the function of motion itself, the function of distance (motion 
is about a change of positions, distance), to be precise.

Function of Distance Function of Speed

Derivative

Anti-derivative

Next, we know that a derivative is a rate. The implication of being a 
rate is that it is a slice of the action, a ‘part of a whole.’ For example, 
the speed at an instant in a motion. What may be the anti (or 
opposite) of a ‘part of a whole’? ‘The whole’ itself. For instance, what 
may be the anti-derivative of the (derivate) speed?

Let us take a second to scrutinise speed; it is the distance travelled 
in a unit of time (whatever be it), and it is a part of the (total) 
distance travelled. Indeed, a speed of 54 m/s implies that each slice 
of 1 second of motion is a distance of 54 m. The anti-derivative of 
speed is, in fact, distance, ‘the whole’. 

Of course, in the story of anti-derivative, ‘the whole’ needs to be 
identified because ‘a whole’ could also mean the universe. ‘A whole’ 
as anti-derivative needs to be specifically limited, and that is what 
is next explored.

We also know that a derivative is the value of something at an 
instant. What may be the opposite of an instant? A period of time, 
an interval of time. Indeed, anti-derivative qualifies (i.e., further 
explains) the quantity discussed previously (total distance travelled). 
The opposite of an instant is accumulated time or a period of time. 
And to the extent that anti-derivatives operate over a specified range 
of values of the changing quantity, the specification of that range 
is an input in finding anti-derivatives. Thus, the anti-derivative 
quantifies how much something has changed over a time period. 
Anti-derivative is kind of a difference between two quantities – one 
at the start of the period or a state of things, and the other at the 



Mathematising Mathematics    167

end of the period or state of things. Another way to see it is the 
summation of the changes or cumulative changes over a period or 
the range of change of another thing. 

Common examples of the application of anti-derivatives to find 
out the amount of change in something (that is changing) are – from 
the anti-derivative of the function that represents the rate at which 
the tumour grows over time, the accumulated change in the size of  
the tumour inside the body of animals can be obtained.  The anti-
derivative of the function that represents the rate of population 
growth over time can be used to find the total population increase 
over that time interval. The impact of a head-on collision of two cars 
is a series of (very fast happening but) small changes in position after 
the collision. The anti-derivative of the function that represents the 
positions of the crashing parts of the cars can be used to provide the 
cumulative change or the displacement of the cars during the collision.  

Here are a few more examples of the deployment of the idea and 
operation that is anti-derivative: 

Average/ 
Function Anti-derivative Explanation

Function Average value of a 
function

Average value of a function over a 
range is the anti-derivative of the 
function.

Area Volume
Volume is the anti-derivative of the 
area; over a dimension; similarly, 
area is the anti-derivative of one 
dimension.

Density 
function Mass

Mass of an object is the  
anti-derivative of a density function 
(which is mass per unit volume) 
over a given volume.

Let us find the derivatives and anti-derivatives of functions through 
their graphs. But before this, read about slopes from Note 1 and 
Note 2 given at the end of the chapter. 
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Derivative of f(x) = x
The derivative of a function at a point is the rate of change of the 
function at that point. Graphically, the rate of change of a function 
at a point is the slope of the curve at that point. A study of the slope 
of a curve indicates the derivatives of function at various points.

Consider f(x) = y = x which represents a linear function. The 
derivative/slope at each point within a domain of the function 
(the possible values of the input value x) having a linear graph is 
constant, that is, y changes at the same rate or constant value within 
the domain of the function.

f(x
) =

 x

2 4–2–4

2

–2

0

y

x

Various tangents on the linear graph of f(x) = x
Since the slope is always a constant value for a linear function, 
the derivative of a linear function is a constant function and can 
be represented mathematically as g(x) = c, (c is any constant) and 
graphically as a horizontal line parallel to the x-axis. 

For linear function f(x) = x, the slope is 1. Therefore, the derivative 
of f(x) is g(x) = 1, the slope of the given function f(x) = x, which 
is a constant function representing a horizontal line parallel to the 
x-axis. We will derive it mathematically later.

g(x) = 1

2 3 4 510–2 –1–3–4–5–6

–1 

2

1

x

y

Graphical representation of derivative g(x) of f(x) = x
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Since, the graphs of all linear functions are derived from the graph 
of y = x and possess the same properties, the slope/derivative of all 
linear functions is a constant.

Derivative of f(x) = x2

It is convenient to study the derivative of any function through its 
graph, and we will work with the graph of the given function f(x) = x2 
to find its derivative. 

Recall, the derivative of a function is also a function and in its 
graph, the x-coordinate is the same as the function’s x-coordinate 
and the y-coordinate is the value of the slope of the given function.

Thus, for the given function, we need to study the behaviour of 
the slope at different points of its graph to get the corresponding 
points to plot the graph of its derivative function.

Let us consider the graph of the given function f(x) = x2, along 
with three tangents drawn at different points, to discuss the nature 
of the slope of the function.

f(x) = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

y

Graphical representation of f(x) = x2

We can observe the following in the graph of f(x) = x2:
•	 For negative values of x, the slope of the given function is 

negative and for positive values of x, it is positive. 
•	 The slope is zero at x = 0, where the tangent is horizontal to the 

x-axis, in fact, it coincides with the x-axis. 
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•	 Based on these observations, two imperatives emerge for the 
derivative function of the given function, f(x) = x2, where the 
derivative function’s value is the slope of the given function 
(whose derivative is supposed to be explored).

•	 The derivative function passes through the origin, since at x = 0 
the slope is 0. 

•	 The values of slopes are increasing for x > 0 and decreasing for 
x < 0. 

This suggests using the above arguments, the possible derivative 
function graphs could be any of the following y = x, y = x3, and y = x5.

x

y

g(x
) =

 x

g(
x)

 =
 x

3

g(
x)

 =
 x

5

Graphical representation of possible derivatives g(x) of f(x) = x2

However, we also observe a gradual decrease/increase in the 
graph. This can be affirmed by the values which the function 
takes when the values of x are put in the function f(x) = x2. 

	 When x = 0.5,  	  f(x) = 0.25 
	 When x = 1,   	         	  f(x) = 1
	 When x = 1.1,  	  f(x) = 1.21 and so on. 

Also, there are no sudden dips/rises in the values of the slope of the 
tangents considered in the graph of the function f(x) = x2 because 
it is a continuous function. Recall that the steeper the tangent, 
the more is its value of slope. This suggests that the values of the 
derivative function would not be large for a small value of input. 
That is, the derivative function cannot be a curve such as x3 or x5, 
where for a small value of x we have a large value of the function. 
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This suggests a straight line as a derivative for x2. 

There can be many functions with this possibility that can be seen 
in the graph.

g(x) = x
2

g(
x)

 =
 5

x 
g(

x)
 =

 2
x 

1 2 3 4

2

1

3

4

–1–2–3–4

–1

–2

0

y

x

Graphical representation of possible derivatives g(x) of f(x) = x2

The takeaway from this derivative graph is that the derivative of all 
quadratic functions is a linear function. We have logically derived 
the nature of the derivative function of a quadratic function. Later 
we will explore which of the above graphs is the actual derivative 
graph of the given function.

The derivative of x2 is 2x. For now, let us generalise that the 
derivative of all quadratic functions is a linear function.

Graphically exploring the anti-derivative of speed
y
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The graph represents a car in motion having a linear speed or we can 
say that the speed increases linearly with respect to time, i.e., at t = 1 
min, it has a speed of 1 km/min; at t = 2 min, it has a speed of 2 km/min. 

Since distance = speed × time, it can be best interpreted by the 
shaded region. The anti-derivative of speed is the area of the shaded 
region, which is the distance covered by the car in motion. 

In fact, the anti-derivative of a function is a quantity that is the 
area under the curve of the function.

Anti-derivative of f(x) = x2

We aim to find a function whose derivative is x2. The anti-derivative 
function is one whose range values are the same as the various values 
of the area under the curve y = x2 in some interval.

Let us assume the interval [0, 2]. The graph of x2 in the interval 
[0, 2] can be obtained by making a table of the various points of x 
and the corresponding points of y.

x 0 1 2

y 0 1 4

And, it can be shown as under. 

f(x) = x2

(0, 0)

(1, 1)

(2, 4)

 (     ,      )
2
1

4
1

x

y

Graphical representation of f(x) = x2 in the interval [0, 2]

Arithmetically, it is tough to find the exact area of the region that 
is curved. However, finding its approximate area is always possible 
and that basically serves our current purpose of broadly finding 
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the nature of the function that is the anti-derivative of x2. Logically, 
breaking the intervals [0, 2] into small sub-intervals would make 
better sense.

f(x) = x2

(1, 1)

(2, 4)

1
2

1
4(    ,    )

3
2

9
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x
 

Graphical representation of the area under the curve of f(x) = x2 in the 
interval [0, 2]

The area under the curve in the interval [0, x] can be approximated 
by a triangle with base x and height x2. 

f(x) = x2

1
2

1
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x
         

f(x) = x2

(1, 1)
1
2

1
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x

(a) Area between interval  
  

1
0,

2
           (b) Area between interval [0, 1]

f(x) = x2

(1, 1)
1
2

1
4(    ,    )

3
2

9
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x
       

f(x) = x2

(1, 1)

(2, 4)

1
2

1
4(    ,    )

3
2

9
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x

(c) Area between interval
 
  

3
0,

2
          (d) Area between interval [0, 2]
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Area 
in the 
interval 
[0, x]

Area of triangle 1= × base × height
2

Coordinate for 
anti-derivative 
graph (x, area 
in the interval 

[0, x])

 
  

10,
2 ∆ × ×

1 1 11 =
2 2 4

 
 
 

31
2=
2

1=
16

, 
 
 
1 1
2 16

[0, 1]
  
∆

12 = × 1 × 1
2

( )31=
2

1=
2

, 
 
 

11
2

 
  

30,
2

∆
1 3 93 = × ×
2 2 4

 
 
 

33
2=
2

27=
16

, 
 
 
3 27
2 16

[0, 2] ∆
14 = × 2 × 4
2

( )32=
2 = 4 (2, 4)

From the above calculations, we can deduce that the approximate 
area under the curve f(x) = y = x2 corresponding to any interval 

[0, x] is 
3x
2

.

On plotting the coordinates for the anti-derivative graph, we will get 

an approximate graph of the anti-derivative function of x2, h(x) = 
3x
2

. 

This is an approximate value, the real value will be less because the 
curve of the graph is concave. That is, instead of the anti-derivative 

being 
3 x

2
, it can be 

3 x
c

, where c is a real number. 

For conceptual exploration, we can ignore ‘c’, and we can say that 
the anti-derivative function of f(x) = x2 is h(x) = x3. The graph of this 
is as under.
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h(x) = x3

–0.5

1

0.5

1.5

2

2.5

0 10.5 1.5 2 2.5 3 x

y

Graphical representation of anti-derivative h(x) of f(x) = x2 ignoring the 
constant c

Thus, the anti-derivative of any quadratic function of the 
type ax2 + bx + c would be a three degree function. On actual 

mathematical computation, the anti-derivative of x2 is 
3 x

3
.

On combining the result for the linear and quadratic functions, the 
derivative of y = x2 + 2x is the sum of the derivatives of x2 and 2x. 
The derivative of x2 is 2x and that of 2x is 2. Thus, the derivative 
of y = x2 + 2x is 2x + 2.

The anti-derivative of y = x2 + 2x is the sum of the anti-derivative 

of x2 and 2x. The anti-derivative of x2 is 
3x
3

 and that of 2x is 
2

2 2x = x
2

. 

Thus, the anti-derivative of y = x2 + 2x is 
3 x

3
+ x2.
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y

x

g(
x)

 =
 2

x +
 2

3
x3

+ x2h(x) =f(x) =  x2 + 2x

Graphical representation of function f(x) = x2 + 2x and its derivative g(x) 
and anti-derivative h(x)

Now, we can find the derivative and anti-derivative of any function 
through their graphs. But there are infinite functions for infinite 
realities. Fortunately, math is the language to be used for expressing 
patterned conditions and relationships. And, inexplicably, it just so 
happens that just a few tens of patterns (i.e., well-defined, repetitive, 
‘universal’ behaviour) lie at the core of the infinite realities. 
Expectedly a core set of functions – parent functions – do nearly 
express all kinds of situations.

The parent functions
When we graphically represent functions we can see that many 
functions’ graphs look alike and follow similar patterns because 
these functions share the same parent functions. Parent functions 
are basic and the simplest form of functions. These functions serve 
as fundamental building blocks for constructing more complex 
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functions. The complex functions from the same family of parent 
function can be easily recognised/graphed bearing the marked 
features of the parent function. Conversely, by taking the parent 
function’s graph through various shifts, flips or stretches, all the 
functions within a family of functions can be derived. 

There are infinite possibilities for creating a unique function 
from just one parent function. For example, y = x, y = –x, and  
y = x + 1 all represent a family of straight lines that can be seen in 
the given graph.

y  
= x 

+ 1
y  = –x y  
= x

1–1–2–3–4 2 3 4

1

2

3

4

–1

y

x0

Graphical representation of a family of straight lines
If we observe the graph carefully, we will notice that the graph of y 
= x + 1 is shifted up by 1 unit from y = x and both have the same 
shape of the graph. Similarly, y = –x is a reflection of y = x about 
the y-axis. However, both the functions, y = x + 1 and y = –x look 
similar in a definite way. The transformations of the parent function 
in no way change the shape of the parent graph, and follow the basic 
characteristics of the family as defined by the parent function.

As another example, let us draw the graph of y = (x + 1)2. 
Following the standard graphing technique, we create the following 
table of coordinates to plot the points on the graph.

x –3 –2 –1 0 1
y 4   1   0 1 4
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y = (x + 1)2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(1, 4)

(0, 1)
(–1, 0)

(–2, 1)

y

(–3, 4)

Graphical representation of the function y = (x + 1)2

Let us also create the graph for y = x2 using the same graphing 
technique.

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

y

(2, 4)(–2, 4)

(1, 1)(–1, –1)

(–1.5, 2.25) (1.5, 2.25)

Graphical representation of the function y = x2

When the above two graphs are superimposed onto a single graph, 
they would look like:

y = (x + 1)2

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(–1, 0)

y

If we observe carefully, y = (x + 1)2 is a parabola with its vertex at 
(–1, 0). Its graph is similar to that of y = x2, a parabola, with vertex 
at (0, 0). Thus, knowing the graph and properties of y = x2 can help 

2
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y = (x + 1)2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(1, 4)

(0, 1)
(–1, 0)

(–2, 1)

y

(–3, 4)

Graphical representation of the function y = (x + 1)2

Let us also create the graph for y = x2 using the same graphing 
technique.

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

y

(2, 4)(–2, 4)

(1, 1)(–1, –1)

(–1.5, 2.25) (1.5, 2.25)

Graphical representation of the function y = x2

When the above two graphs are superimposed onto a single graph, 
they would look like:

y = (x + 1)2

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(–1, 0)

y

If we observe carefully, y = (x + 1)2 is a parabola with its vertex at 
(–1, 0). Its graph is similar to that of y = x2, a parabola, with vertex 
at (0, 0). Thus, knowing the graph and properties of y = x2 can help 

2

us to know the graph and properties of the function y = (x + 1)2 as 
well. Hence, y = x2 is called the parent function of all other degree 
2 polynomials, such as y = (x – 1)2 and y = (3x – 4)2. The graphs of 
both of these functions have the same shape,  however, the vertex 

the case of y = (x – 1)2 is (1, 0) and that for y = (3x – 4)2 is ( 4
3

, 0).
We can combine the graphs of these parent functions to create 

a new combined function. Let us explain this with the help of a 
combined function f(x) = xsin x.

This function is a product of the linear function x and the sine 
function sin x. First, visualise the graphs of the individual functions.

f(x
) =

 x

x

y

            

π/2 3π/2 x

y

f(x) = sin x

Graphical representation of  f(x) = x          Graphical representation of  f(x) = sin x

The sine curve oscillates between –1 and 1. However, its product 
with x will change the amplitude (the maximum height of a wave) 
of the combination function. This can be verified from the graphical 
representation of f(x) = x sin x.

x

y

f(x) = x sin x 
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Limit solves the computational challenge of instantaneous values
Let us get back to the challenge of finding the instantaneous value 
of a changing quantity and speed as an example of the same. We 
know ‘the rate of change of distance’, is speed, it offers the ‘average’ 
of the distance traversed over a period of time. The idea of ‘average’ 
is embedded in the idea of rate. The discussion eventually boils 
down to overcoming the limitation of the mathematical expression 
of average, which is the best mathematical means possible to find 
how much something changes due to the change in something else 
(such as time).  

Recall, average speed is conceptually akin to a division expression 
(average is a kind of ratio that in its standard form is best read as 
division) and divisor of (almost) zero makes the quotient skewed 
towards being disproportionately bigger. 
In the discussion on derivatives, we figured out that we can overcome  
this challenge by using the idea of an indirect quantity, a derived 
quantity, called the derivative; for example, the instantaneous value 
of speed (of something in motion), at a point, is derived from the 
way distance changes over time – the rate of change of distance 
travelled at that instant.

Conceptually this was a breakthrough, but computationally, 
finding the rate of change at an instant remained a challenge (when 
computing speed, instantaneous strictly means ‘zero’ time duration 
of the observation, and the distance traversed in that ‘zero duration’). 

For finding instantaneous speed, we cannot have ‘zero’ time 
duration a divisor. The next best thing is to make the time duration 
so small that it is non-zero but tends to be as close to zero as 
possible. We need a non-zero divisor for the computation of 
instantaneous change to be possible, but to reflect instantaneous 
values, the nonzero divisor must be the smallest possible. When 
the independent quantity is non-zero, yet approaching zero, it is 
said that ‘the limit of the quantity is zero’. This non-zero, but closest 
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possible to zero approach, where the rate of change in the value of x 
is non-zero but near zero is called the limit of a function f(x).

Now let us study an example of a curve, parabola y = x2, to see 
how we can get infinitesimal tangent on a point on the curve and 
use it to find the slope at that point on the curve.
We will find the approximate value of the slope on the point of 
interest Q (2, 4) by continuously reducing the distance between the 
two random points P and R (above and below point Q) on the curve 
to reach the closest to point Q to get the infinitesimal tangent. 

The slope of this tangent would give the slope of the curve at 
point Q.

1

1 2 3 4 5 6

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

–1 0–2–3–4–5–6

R

Q

P

(4, 16)

y = x2

(2, 4)

(0.5, 0.25)

y

x

Graph of y = x2 with points P (0.5, 0.25) and R (4, 16)

Draw a line through two random points P (0.5, 0.25) and R (4, 16) 
on the curve and calculate its slope.

Slope of PR = 0.− −
− −

2 1

2 1

y y 16 25slope = = = 4.5
x x 4 0.5

This is a rough approximate slope of the infinitesimal tangent at 
point Q.
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Similarly, take another set of points, say, P (1.9, 3.61) and 
R (2.1, 4.41), which are closer to the point Q (2, 4).

1

1 2 3 4 5 6

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

–1 0–2–3–4–5–6

R
Q

P

(2.1, 4.41)
(2, 4)

(1.9, 3.61)

y = x2

y

x

Graph of y = x2 with points P (1.9, 3.61) and R (2.1, 4.41)

Slope of PR = 
3.61− −

=
− −

2 1

2 1

y y 4.41 0.8slope = = = 4
x x 2.1 1.9 0.2

Now as we move points P and R further close [i.e., P (1.98, 3.9204) 
and R (2.02, 4.0804)] to point Q on the curve to find a better 
approximate value of the slope of tangent on point Q.
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–1 0–2–3–4–5–6

R
Q

P

(2.02, 4.0804)
(2, 4)

(1.98, 3.9204)

y = x2

y

x

Graph of y = x2 with points P (1.98, 3.9204) and R (2.02, 4.0804)

Slope of PR 0.16 4
0.04

− −
= = =

− −
2 1

2 1

y y 4.0804 3.9204slope =
x x 2.02 1.98

	

As the points P and R get closer and closer to the point of 
interest Q, the line becomes smaller and smaller while the slope of 
the line changes. When the points P, Q, and R are closest possible, 
the line becomes a tangent and the slope of this line gives the best 
approximate value of the slope of the curve at the point of interest 
(point Q). 

Another way to look at it is as follows.
y

x0

△x
△yP (x1, y1)

Q (x2, y2)

θ

Graph of slope of a curvilinear function
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As seen, the slope of a line = 
−
−

2 1

2 1

y y
x x

 

For a curve, x1 is taken very close to x2 and y1 is taken very 

close to y2. Thus,∆ −2 1x = x x
 and ∆ −2 1y = y y are very small. 

tan ∆
θ

∆
y

Also, =
x

.
 

Thus, a slope of a line can be characterised using tan θ, which is 
the angle made by the tangent to the curve at the given point and 
the horizontal axis. 

Why is the limit so-called?
The word ‘limit’ is the best descriptor of the value of the function, 
when there is the smallest change in the value of the variable, say 
x. Formally, the ‘limit of the function f as x goes to c is t’ can also 
be rephrased as ‘As x approaches c, the value of the function f gets 
arbitrarily close to t’.

In real life, when a chemical reaction between two chemicals 
takes place, a new compound is formed as time passes. So here, the 
new compound is the limit of a function as the time approaches 
infinity.
Similarly, tossing a coin gives a head or a tail. To know the probability 
of the outcome, we may flip a coin many times, making repeated 
trials. Here, as time approaches a more considerable period, the 
number of heads becomes equal to the number of tails in general. 
So, the limit of tossing a coin is the probability of getting an equal 
number of heads or tails as time approaches infinity.

Continuity solves the conceptual challenge of instantaneous values
The entire concept of limit hinges on how effective is the chosen 
infinitesimal value in detecting the rate of change or the slope of a 
function at the chosen instant. For example, while finding the best 
approximate value of the slope of f(x) = x2 at the point Q (2, 4), the 
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points P and R are moved as close as possible to Q. The reliability of 
the computed rate of change at an instant, is measured in terms of 
how consistent is the value of the rate, i.e., how close are the slopes 
of the tangent at P and tangent at R.

Q
R

P

y

x0 x

f(x)

The slope of the function f(x) at point Q

One of the more obvious ways and means of seeking consistency 
is to look for the values of the rate at instants very close to the 
chosen instant. It is easily appreciable that the consistency of the 
rate of change of a function would be considered higher if at the 
two instants around the chosen instant – before and after – the 
computed values of the rate (before and after) are the same as the 
rate value at the chosen instant.
Thus, the infinitesimal value should be such that it can detect sharp 
variations in the values of the rate, closest to the point of interest 
(for finding an instantaneous value). The chances of capturing 
any sharp variation increase as the infinitesimal becomes smaller 
(and comes closest to the value of the instant). Any detected sharp 
variation declares a lack of continuity at that point.

Continuity is an important consideration for finding derivatives, 
it helps to know if a function may not have a derivative at an instant 
(non-continuous functions do not have derivatives, we can know 
this without having to attempt a computation of the derivative), but 
it is not a necessary condition for computing the non-derivative 
value of a function over a range.
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A digital recording of a song is an example of a continuous 
function. The digital recorder records tiny bits of sounds several 
times a second which may provide sufficient data for a computer to 
replicate the singer’s overall performance while singing.
The growth of nails in human hands and feet is another example 
of continuous function. The nails grow at an average rate of 3.47 
millimetres (mm) per month, or about a tenth of a millimetre per 
day. It grows and slides along the nail bed (the flat surface under 
the nails), giving strength to the nail. This process continues until 
the death of a human being. However, some factors that affect this 
continuous growth of function are age, location, season, hormones, 
health, etc.

Ascertaining continuity at a point
Let us graphically see how important is the choice of infinitesimal 
in appreciating the concept of continuity of a function (as evident 
from its curve) at a point. For a function to be continuous at a point, 
it is obvious that the slope of the tangents on the points just before 
and after the point of interest is nearly the same. 

Take any random point on the curve y = x2, say, P (0.5, 0.25) and 
R (3.5, 12.25) below and above the point of interest (point Q), and 
join points PQ and QR.

1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

13

–1 0–2–3–4

R

Q

P

(3.5, 12.25)

(2, 4)

(0.5, 0.25)

y = x2

y

x

Graph of y = x2 with points P (0.5, 0.25) and R (3.5, 12.25)
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Slope of PQ = 0.− −
− −

2 1

2 1

y y 4 25 3.75slope = = = = 2.5
x x 2 0.5 1.5

Slope of QR = 4
2

− −
− −

2 1

2 1

y y 12.25 8.25slope = = = = 5.5
x x 3.5 1.5

Now we move points P and R closer to point Q to calculate a better 
approximate value of the slope of the curve at Q. Let us choose 
P (1, 1) and R (3, 9), which are closer to Q (2, 4).

1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

–1 0–2–3–4

R

Q

P

(3, 9)

(2, 4)

(1, 1)

y = x2

y

x

Graph of y = x2 with points P (1, 1) and R (3, 9)

Slope of PQ = − −
− −

2 1

2 1

y y 4 1 3= = = 3
x x 2 1 1

        

Slope of QR = 4
2

− −
− −

2 1

2 1

y y 9slope = = = 5
x x 3

        

Similarly, take another set of points, say, P (1.8, 3.24) and 
R (2.2, 4.84), which are further closer to point Q (2, 4).
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1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

13

–1 0–2–3–4

R
Q

P

(2.2, 4.84)
(2, 4)

(1.8, 3.24)

y = x2

y

Graph of y = x2 with points P (1.8, 3.24) and R (2.2, 4.84)

Slope of PQ = 3.24
1.8

− −
− −

2 1

2 1

y y 4 0.76slope = = = = 3.8
x x 2 0.2

       

Slope of QR = 4
2

− −
− −

2 1

2 1

y y 4.84 0.84slope = = = = 4.2
x x 2.2 0.2

Now moving very close to Q, take points P (1.95, 3.8025) and 
R (2.05, 4.2025).

1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

13

–1 0–2–3–4

R
Q

P

(2.05, 4.2025)
(2, 4)

(1.95, 3.8025)

y = x2

y

x

Graph of y = x2 with points P (1.95, 3.8025) and R (2.05, 4.2025)
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Slope of PQ = − −
− −

2 1

2 1

y y 4 3.8025 0.1975= = = 3.95
x x 2 1.95 0.05

Slope of QR = 
− −
− −

2 1

2 1

y y 4.2025 4 0.2025Slope of QR = = = = 4.05
x x 2.05 2 0.05

As points P and R get closer and closer to the chosen point, Q, the 
lines PQ and QR will coincide, eventually forming a tangent at 
point Q. The closer the points P and R are near the chosen point 
of interest Q, the closer are the values of the slopes at these points, 
suggesting a continuous function.

Other examples of continuous change beyond motion 
Average or indicative rate of reaction is an important characteristic 
of chemical reactions. It is an essential parameter in large-scale 
manufacturing of chemicals, drugs, and household chemicals. For 
instance, knowing the rate at which products are being made and the 
bottlenecks (which may mostly be due to the lower-than-anticipated 
speed of reactions) production process can be fine-tuned. 

For a chemical reaction, the change in concentration of reactants 
or product per unit time (such as second, minute, or hour) over a 
given period of time is called the average rate of reaction. And in 
a reaction, the rate of change of concentration of the reactants or 
products at a particular instant of time is the instantaneous rate of 
that reaction at a specific instant of time. 

An interesting feature of the rate of reaction is that it continuously 
changes during every reaction – it depends upon the residual 
concentration of the reactants (which decreases with each passing 
instant of the reaction). A reaction never proceeds at the average 
rate of reaction. To really understand a chemical reaction, we need 
to go beyond the average rate of reaction.

Stock market intraday-trading involves traders buying and selling 
financial instruments based on fluctuating prices on the same day. 
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The trader makes a profit or loss based on the instantaneous stock 
price. This signifies a continuous process.

Whereas, in long-term investment, we look at the average of the 
stock prices and then invest in those stocks, which gives a good 
average return

Average share price
Number of share

=
Total cost of the shares purchased

Simple and compound interest rates are a matter of common 
knowledge (if not understanding) and experience that we could 
easily extend to broaden the appreciation of the difference between 
the basic idea/concept of average and instantaneous values of 
quantities that frequently or continuously change in time or space 
(i.e., change with change in position). It may also be added that 
when we talk about the ‘real world change,’ it implies that we cannot 
completely predict the change.

Simple interest rates are kind of ‘average’ of interest rates. The same 
flat interest rate will be applied for computing the interest amount 
on a principal over a period of time. The interest is assumed to be 
the same amount every day in that period. On the other hand, the 
compound interest rate resembles the idea of instantaneous interest 
amount – which varies by the day, week, month, or whatever period 
of compounding – over the deposit period. 
This is to bring out that the instantaneous value of the interest 
amounts would behave differently under simple and compound 
interest situations.

This chapter is excerpted from `Calculus for Professionals,' Volume I, 
co-authored by Sandeep Srivastava and Dr Garima V Arora. 
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Notes on slope, continuous quantities and differential equations

Note 1 Slope is important 

The slope gives the following information about a function:
•	 Steepness of a function.
•	 Direction of change of the curved line.
•	 The slope describes the degree of sensitivity of the dependent 

variable (y) on the independent variable (x) for a function 
y = f(x), i.e., the quantum of change in y due to infinitesimal 
change in the x. For example, a slope of 4 at a point means the 
y-axis will grow 4 times the (small) change in the x-axis.

•	 The slope of the function helps us compare any set of functions 
to know if they are parallel, perpendicular, or converging and the 
rate of convergence.

•	 The maximum and minimum value of a function – local (within 
a limited range of the variables) or global (over the entire range 
of values).

•	 The slope can be used to find whether the function increases 
or decreases after the location of the point of maxima or the 
minima. Indeed, the most important characteristic of non-linear 
functions is their slope.

Note 2  Nature of the graphs and slopes of the functions

Calculus is constructed on functions; a familiarity with the nature 
of the graphs of functions is required for understanding calculus. 
The graphs of the functions may be increasing or decreasing. They 
may be flat or may not even exist. They may occur with breaks or no 
breaks. This information about the nature of the graph speaks about 
the slope of the curve at various points.
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Increasing
Increasing

Decreasing Break

Flat (Constant)

-1-1 1

1

2

3

4

2 3 4 5 6 7 8 9-2-3

-2

-3

Nature of the graphs - Increasing, decreasing, break, flat
The instantaneous value of (constantly) changing quantities can only 
be found through the knowledge of the rate of change at all instants. 
The slope is the way to find the rate of change of the function, i.e., it 
describes how rapidly the outcome of a function changes with a unit 
change in its input(s) at various points in its domain. It tells about 
the steepness and direction of the lines and curves. Graphically, the 
rate of change is the slope.

    
0

y

x

y2

5

y1

x1 x2 5x0

y0

                            0 2

y

x

y2

y1

x1x2x0

y0

4

                
 Graph of uniform rate of change         Graph of non-uniform rate of change

Mathematically, the rate of change is the ratio of the change in the 
value of the function y, or f(x) due to a corresponding change in the 
value of x.

Rate of change = y
x

∆
∆

 = ( )
( )

−
−

1 0

1 0

y y
x x

   

Constant slope of a linear function
It is easy to find the rate of change (or slope) of linear function, 
where the rate of change is constant. 
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Let (x1, y1) be the point where the slope of the line is to be 
determined. Let us take any random point (x2, y2) on the same line.

Then, the slope of the straight line is given by

Slope, −∆
∆ −

2 1

2 1

y   ychange in y yslope, m = = =
change in x x x   x

y

x

(x2, y2)

(x1, y1)

0

△x = (x2 – x1)

△y = (y2 – y1)
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Graphical representation of a straight line
Now, let us consider the four cases mentioned below:

Case Graph Slope
Case I 
Consider a 
line joining 
the points 
(3, 4) and 
(–3, –2).

y

x0 1

1

–1
–1

–2

–2

–3

–3

–4–5 2

2

3

3

4

4

5

5

(3, 4)

(–3, –2)

An increasing function 
describes a positive 
slope.

− −
− −

4 ( 2)m = = 1
3 ( 3)

Case II
Consider a 
line joining 
the points 
(0, 4) and 
(2, 1).

y

x0 1

1

–1
–1

–2–3 2

2

(0, 4)

(2, 1)

3

3

4

4

5

5
A decreasing function 
describes a negative 
slope.

1 4 3m = =
2 0 2
− −
−

Case III 
Consider a 
vertical line 
x = 2.

y

x0 1

1

–1
–1

–2

–2

–3 2

2

(2, 1)

(2, –2)

(2, 3)

x = 2

3

3

4

4

5

A vertical line describes 
an undefined slope. 

−
= = ∞

−
3  1 2m =
2  2 0

Case IV
Consider a 
line joining 
the points 
(0, 3) and 
(2, 3).

y

x0 1

1

–1
–1

–2–3–4 2

2

(0, 3)

(2, 3)

3

3

4

4

5
A horizontal line 
describes zero slope.

3 3
m = = 0

2 0
−
−

From above inferences, we can say that the slope (or rate of change) 
of a linear function is always constant.  
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Varying slopes of a curvilinear function
The slope (or the rate of change) of the curvilinear function is 
not constant and keeps changing along the points on the curve. A 
tangent at a point on a curve is a straight line that best approximates 
the slope of the curve near that point. 

y

x

P

Q

R

Time

D
is

ta
nc

e

0

Tangents at various points on the curve

Tangent best approximates the slope of curve
Let us see for ourselves how the slope of a curve at a point is best 
approximated by the tangent at that point (there can be only one 
tangent at a point on a curve). 

We start with an ellipse with tangent PR at the point Q. From the 
image (i), it is not evident that the slope of PR is the same as the 
slope of the ellipse at point Q. 

On enlarging the image and reducing the tangent PR (image ii) 
and we still cannot see the relationship between the slopes of PR 
and the ellipse at Q.

We further reduce the size of the tangent, and enlarge the 
diagram to view the relationship between the tangent and the 
curve of the ellipse.
               P

Q
R

P
Q

R
 P

Q
R  

Image (i)                     Image (ii)                    Image (iii) 
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Interestingly, as we keep enlarging the image and reducing the size 
of the tangent to know the preciseness of the slope of the curve at 
point Q, we will notice that a very small area of the curve (or a point) 
coincides with the tangent.     

P
Q

R          P Q R

As we have already discussed, it is easy to calculate the slope of a 
straight line. To find the slope of a curve at a specific point, we find 
the slope of the tangent line at that specific point, it provides the 
best approximation. In the diagram, the slope of the tangent PR is 
the best approximate value of the slope of the elliptical curve at Q, 
as the tangent PR coincides with the curve at Q. 

Characterisations of slope for a curve

Graph Slope
y

x0

x

yA

•	 The tangent to the 
curve at the point A 
is tending upwards 
when moving from 
left to right, which 
is a property of 
increasing functions 
– positive slope.

•	 The tangent at A 
makes an acute angle 
with the horizontal. 

y

x0

x
y

B

•	 The tangent to the 
curve at the point B 
is tending downwards 
when moving from 
left to right, which is a 
property of decreasing 
functions – Negative 
slope.

•	 The tangent at B makes 
an obtuse angle with 
the horizontal. 
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y

x0

C

'C   ''C ''C

'C ''C

•	 As we move from C’ 
to C and C to C’’ with 
an increase in x, the 
value of the function 
remains the same. 

•	 The rate of change 
in both cases being 
0. Thus, a horizontal 
tangent has slope 0.

 

y

x0

C
'C

  ''C

 ''C

'C

''C

  

•	 As we move from C’ 
to C and C to C’’, the 
value of the function 
increases for the same 
value of x. 

•	 The slope is not 
defined for a vertical 
tangent on the curve 
at a point.

Note 3  The nature of input and output

Nature of input 
The nature of input effects the nature of output. Let us explore 
how input values for a function may be different.

There is a world of things and situations that are quantified 
through the act of counting, and a world that is quantified 
through the act of measurement. The marks obtained by a 
student in an exam is quantified by the evaluator by first 
counting the marks obtained in individual questions and then 
adding them all up, whereas the weight of students in a class 
is quantified by measuring the weight of individual student 
on a weighing scale. Recall, functions take some kind of 
quantities as inputs and produce some other, or similar kind of 
quantities as output, which could be obtained by counting, or 
by measurement.
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The nature of quantities obtained by counting is what we call 
as discrete. For example, marks obtained by a grade X student 
in all subjects in a school have discrete values, graphically 
seen as follows.
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Graphical representation of discrete quantities

Discrete does not necessarily mean integer value, it only means 
that the possible values are definite and known; for example, 
the marks in a subject could well be 85.5, 85.25 or 85.75, but 
hardly 85.55.

The nature of quantities obtained by measurement/computation 
is typically what we call continuous, expressed using real numbers. 
Continuous quantities can take any value in an interval. For 
example, the aggregate percentage value is technically discrete 
because aggregate percentages are calculated by dividing the 
marks obtained by the total marks, which itself are discrete. 
However, percentage data is often treated as continuous for the 
reason that it can take any value from 0 to 100%.

 Thus, input values could be discrete or continuous, depending 
on how they originate – out of counting, measurement, or 
arithmetical computing.

Discrete or continuous function – The nature of output
The nature of output could also be discrete or continuous. The 
effect of the function on the nature of outcome is obvious; 
for example, f(x) = x2 accepts inputs as negative and positive 
numbers but the outputs are only positive.
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Let us take a function f(x) = x2 and take different values to 
know how this function behaves.

When input values are taken as discrete, say, –2, –1, 0, 
1, ..., the nature of output is also discrete and it is 4, 1, 0, 1, …, 
corresponding to the input values in the given function.

f(x) = x2

(–2, 4) (2, 4)

(1, 1)(–1, 1)

Domain: Integers

y

x

1

0

2

3

4

1–1

–1

–2–3–4–5 2 3 4 5

Graphical representation of function for discrete input values

On the other hand, when the domain is an interval (say [–2, 2]), 
the output or the range is also an interval (here [0, 4]) and takes 
every value between –2 and 2, and hence continuous.

f(x) = x2

Domain: Real numbers

1

0

2

3

4

5

–1

x1–1–2–3–4–5 2 3 4 5

(2, 4)

(1, 1)

(0,0)

(–2, 4)

(–1, 1)

y

(0.5, 0.25)(–0.5, 0.25)

(–1.5, 2.25) (1.5, 2.25)

Graphical representation of function for continuous input values

Thus, for a different domain of input values, the same function 
f(x) = x2 will have a different range of the output values.

The nature of output depends on the nature of input and the 
nature of the function (i.e., the kind of ‘processing’). 
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The idea of a function being continuous is especially 
important in calculus.
Note 4  Mathematical expressions using derivative (Differential 

equations)
Recall that algebraic expressions are combinations of constants 
and variables which are put together using mathematical symbols 
and algebraic equations are expressions that are set equal to zero. 
It is indeed fascinating to consider that equations can incorporate 
changing conditions and the rate of change through the use of 
derivatives and rates of change. Such equations are common, 
they are mathematical tools used for modelling and analysing 
everyday situations and scientific conditions that involve change 
and relationships between variables. These ‘derivative equations’ are 
mathematical termed as ‘differential equations’. 

Do not be startled if we say that the idea and application of 
‘differential equations’ is a primitive biological, animal instinct and 
ability. We are adept at using differential equations intuitively. 

For starters, in a race, gauging and reacting in the heat of the 
moment to the increasing or decreasing distances between the 
runners as things change dynamically involves using the brain’s 
raw/god-gifted logical abilities and spontaneous calculations. What 
we do intuitively, formal mathematical modelling of the situation 
would involve calculus! The conscious and engaging assessment 
and extra push mid-air when jumping across a ditch ensures that 
the jump is successful. Again, a mathematical modelling of decision 
making in the situation would be based on the derivative (rate of 
jump) and anti-derivative (the extent of jump). 

Wherever there are changing quantities in the ‘equation’ of thing, 
the situation is mathematically expressed as differential equations. 
These equations can be used to configure everyday life to rocket 
science. The laws of nature and dynamism in science and maths can 
easily be explained through differential equations. Think of the way 
we go across a busy road – constantly juggling with the estimated 
speed of the vehicle (rate of approach), the closing distance between 
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the fast-approaching vehicles and the person crossing the road, the 
distance left to cross the road, speed of the person crossing the road, 
as well as the obstructions on the way (the other people crossing the 
road from the opposite direction, for instance); it is a fairly complex 
situation of changing dimensions, but most of us have gotten it right 
every time.
Some examples of differential equations in real life:
•	 Any change in human body temperature is a response to 

changing conditions outside and within the body, such as 
ambient temperature, the type of food eaten, the type of clothes 
worn, the type of activity performed at that particular time (for 
example, exercising would increase the heart pumping and 
blood circulation rate, thereby increasing the temperature), and 
more. So, ‘in the equation’, the temperature of a human body 
responds to various changing conditions underlying it.

•	 For calculating the time required to drain a tank full of fluid, 
differential equation comes into play. Draining time depends 
on various factors like the volume of fluid, the air pressure, the 
height of the tank, the density of the fluid, the rate of flow, the size 
of a draining hole, and more. Any change in the above factors 
may impact the time taken to drain the tank. For example, if 
water and petroleum are put in two similar tanks, the time taken 
to drain them would differ due to the difference in their density. 
Similarly, if the size of the draining hole is small, it would impact 
the time taken to drain the fluid. ‘In equation terms’, factors like 
the size of the hole and height of a tank are constant terms for 
a specific tank for all fluids, while density, the volume of fluid, 
and air pressure are differentiated with time to estimate the time 
taken to drain the fluid.

•	 The value of the National income of a country is dependent 
on various factors like general price level, aggregate demand, 
aggregate supply, compensation to employees, saving rate, 
government policy, and more. These factors depend on the 
inflation rate, total production of goods and services, wage 
rate, marginal propensity to consume, etc. All the factors are 
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interlinked and dynamic in nature. For example, the general 
price level of a country increases due to an increase in the 
inflation rate, which may change due to government policy or a 
change in supply. ‘In equation term’, compensation of employees 
and saving rate are constant terms for a period while general 
price level, aggregate demand, and supply are differentiated 
with time to know the value of national income.

•	 The differential equation is used in a video game to determine 
the rate of motion of an object. For example, consider the static 
force diagram for a ball rolling down a ramp. Knowing the time 
duration in which it will roll down depends on various factors 
like gravity vector, mass of the ball, and the angle of the ramp 
(its normal vector).These factors are further dependent upon 
the net force applied on the ball and the acceleration of the ball 
in that frame. So, ‘in equation terms’, the mass of the ball and 
gravity vector is considered constant, while other factors are 
variable and differentiated with respect to time.

An interesting aspect of differential equations is that unlike algebraic 
equations and the math we know, the ‘solution’ of differential 
equations is not a quantity (or a set of quantities) but another 
function. Such a solution might be expected because when we deal 
with derivatives, we essentially deal with functions. It means that 
differential equations give us a ‘modelled’ behaviour of things, not a 
particular instance of behaviour. And there is often a set of solutions 
for a given differential equation.

A few famous equations in physics which depict the rate of 
change are:

Force = Mass × Rate of change of velocity 
Power = Voltage × Rate of change of charge
Momentum = Mass × Rate of change of distance
The conceptual exploration of derivative (and the related idea of 	

     ‘anti-derivative and derivative equation’) concludes here.

 



203

It’s Your Convenience World, finally
This is for real, for once

“Welcome to the New World Order – the IYCWorld (it’s-
your-convenience-world). The power to choose yourself and 
engage in your chosen socio-economic proclivities, around 
the world, at the click of a mouse is a force that will transform 
your life like nothing before. And your choice will be your 
limit in the skyless e-universe. IYCWorld is only as good as 
you demand it to be ... try as they might, the local socio-
economic dimensions cannot stop your will and convenience 
to rule.”

–  Sandeep Srivastava, 2001

This is an excerpt from the 2001 book ‘Embracing the Net,’ 
published by FT.com (Pearson, UK,) co-authored by Soumitra 
Dutta, currently Dean Said Business School, University of Oxford, 
and Sandeep Srivastava. The extract was the stated overarching 
vision and strategic direction for the digital economy in the Third 
Industrial Revolution (3IR), post the 2000 dot-com bust. 

Twenty-three years later, and a decade in the Fourth Industrial 
Revolution, 4IR, the vision and strategic prescription is just as valid 
and robust, literally nothing even to be tweaked. Indeed, we have 
come a long way in the right direction, the emergence of the 4IR as 
the hard-infrastructure for Society 5.0 is just the needed ‘physical 
enabler’. However, we are far too away from transformations  on 
the ground.



204     The real goal of ‘Real Mathematics’ 

It is not too hard to locate why we are still as long a way from 
Society 5.0, in Japan as much as in every nation of the world – the 
complementing soft-infrastructure of the 4IR is missing in action. 
A vast majority of the educated adults of our times cannot harness 
4IR, and it is turning for the worse. Education – the technology of 
raising best-potential adults out of every child – has turned out to 
be the intractable complication for all of humankind. 

However, mathematisation of mathematics education is a 
masterstroke for ushering in an educational renaissance. For, 
learning mathematics is peerlessly personalisable and most 
objectively evaluable. Besides, mathematics is the easiest 
domain of knowledge to learn; every one of us is born with all 
the mathematical logic that is there is to be discovered, waiting 
to decipher the order in the nature. Success in mathematics 
education is the only first step way to kick start the larger 
educational reformation, and we can go on. 

Above all, ‘Cent Percent Mathematics’ is no more than 50 hours 
of conversation for the entire K-12 curricula. And language is 
no barrier. Cent Percent Mathematics is all in public domain, 
the evidence of which are the two case studies. Mathematics-led 
educational revolution is real now, ready to more than complement 
4IR and set off a virtuous cycle of growing economic dignity to 
every one of us.

Be ready to play your part, in mathematising your own mathematics, 
and experience economic miracles for self, family, and community.   



It is essential to realize that science does not offer a complete knowledge 
of the mind, although we do experience its mystery and enormous 
energy. However, it is clear that energy is a vital prerequisite for 
performing mechanical work. 

The mental processes of the mind are essential for performing 
creative, innovative work, the difference lies in how people utilize the 
power of their mind. Everyone knows the saying that “an empty mind 
is Devil's workshop," so without a meaningful purpose, people might 
spend their mental energies on destructive work. On the other hand, 
mental energy can be utilized for creative or innovative work as well 
as improving quality of life. 

A mathematised mind is highly predisposed towards seeking and 
seeing order in all things around.
	 – Ramjee Prasad, 2012


